Effect of Fly Ash with Different Particle Size Distributions on the Properties and Microstructure of Concrete
Tóm tắt
Từ khóa
Tài liệu tham khảo
S. Joshi, S. Goyal, A. Mukherjee, and M.S. Reddy, Microbial Healing of Cracks in Concrete: A Review, J Ind Microbiol Biot, 2017, 44(11), p 1511–1525
F.N. Okoye, J. Durgaprasad, and N.B. Singh, Effect of Silica Fume on the Mechanical Properties of Fly Ash Based-Geopolymer Concrete, Ceram. Int., 2016, 42(2), p 3000–3006
A. Terzić, L. Pezo, V. Mitić, and Z. Radojević, Artificial Fly Ash Based Aggregates Properties Influence on Lightweight Concrete Performances, Ceram. Int., 2015, 41(2), p 2714–2726
Gadkar, A, Subramaniam, Kolluru V L. An Evaluation of Yield and Maxwell Fluid Behaviors of Fly Ash Suspensions in Alkali-Silicate Solutions. Mater Struct, 2019, 52(1176).
MS Nasr, AA Shubbar, ZA-AR Abed, S Mohammed. Properties of Eco-friendly Cement Mortar Contained Recycled Materials from Different Sources. J BUILD ENG, 2020, 101444.
K. Neupane, Fly Ash and GGBFS Based Powder-Activated Geopolymer Binders: A Viable Sustainable Alternative of Portland Cement in Concrete Industry, Mech. Mater., 2016, 103, p 110–122
Q. Tang, Y. Zhang, Y. Gao, and F. Gu, Use of Cement-Chelated, Solidified, Municipal Solid Waste Incinerator (MSWI) Fly Ash for Pavement Material: Mechanical and Environmental Evaluations, Can. Geotech. J., 2017, 54(11), p 1553–1566
S. Alahrache, F. Winnefeld, J.-B. Champenois, F. Hesselbarth, and B. Lothenbach, Chemical Activation of Hybrid Binders Based on Siliceous Fly Ash and Portland Cement, Cem Concr Compos., 2016, 66, p 10–23
R. Rajamma, R.J. Ball, L.A.C. Tarelho, G.C. Allen, J.A. Labrincha, and V.M. Ferreira, Characterisation and Use of Biomass Fly Ash in Cement-Based Materials, J. Hazard. Mater., 2009, 172(2–3), p 1049–1060
A. Bhatt, S. Priyadarshini, A. Acharath Mohanakrishnan, A. Abri, M. Sattler, and S. Techapaphawit, Physical, Chemical, and Geotechnical Properties of Coal Fly Ash: A Global Review, Case Stud Construct Mater, 2019, 11, p e00263
A. Cascardi, F. Micelli, and M.A. Aiello, An Artificial Neural Networks Model for the Prediction of the Compressive Strength of FRP-Confined Concrete Circular Columns, Eng. Struct., 2017, 140, p 199–208
H. Chen and C. Lee, Electricity Consumption Prediction for Buildings Using Multiple Adaptive Network-Based Fuzzy Inference System Models and Gray Relational Analysis, Energy Rep., 2019, 5, p 1509–1524
D. Deepak and J.P. Davim, Multi-Response Optimization of Process Parameters in AWJ Machining of Hybrid GFRP Composite by Grey Relational Method, Proc. Manuf., 2019, 35, p 1211–1221
S. Aydın, Ç. Karatay, and B. Baradan, The Effect of Grinding Process on Mechanical Properties and Alkali–Silica Reaction Resistance of Fly Ash Incorporated Cement Mortars, Powder Technol., 2010, 197(1–2), p 68–72
S. Wang, L. Baxter, and F. Fonseca, Biomass Fly Ash in Concrete: SEM, EDX and ESEM Analysis, Fuel, 2008, 87(3), p 372–379
Jung-Il S, Woo Sung Y, Haemin S, Hong-Gun P, Jae Eun O. Influence of Calcium Nitrate and Sodium Nitrate on Strength Development and Properties in Quicklime(CaO)-Activated Class F Fly Ash System. Mater Struct. 2019, 52(1156).
S. Donatello, A. Fernández-Jimenez, and A. Palomo, Very High Volume Fly Ash Cements. Early Age Hydration Study Using Na2SO4as an Activator, J. Am. Ceram. Soc., 2013, 96(3), p 900–906
J.G.S. Van Jaarsveld and J.S.J. van Deventer, Effect of the Alkali Metal Activator on the Properties of Fly Ash-Based Geopolymers, Ind. Eng. Chem. Res., 1999, 38(10), p 3932–3941
M. Criado, A. Fernandez Jimenez, I. Sobrados, A. Palomo, and J. Sanz, Effect of Relative Humidity on the Reaction Products of Alkali Activated Fly Ash, J. Eur. Ceram. Soc., 2012, 32111, p 2799–2807
K. Vance, A. Dakhane, G. Sant, and N. Neithalath, Observations on the Rheological Response of Alkali Activated Fly Ash Suspensions: The Role of Activator Type and Concentration, Rheol. Acta, 2014, 53(10–11), p 843–855
J. Payá, J. Monzó, E. Peris-Mora, M.V. Borrachero, R. Tercero, and C. Pinillos, Early-Strength Development of Portland Cement Mortars Containing Air Classified Fly Ashes, Cem. Con. Res., 1995, 25(2), p 449–456
P.K. Mehta, Influence of Fly Ash Characteristics on the Strength of Portland-Fly Ash Mixtures, Cem. Con. Res., 1985, 15, p 669–674
D. Ravina and P.K. Mehta, Properties of Fresh Concrete Containing Large Amounts of Fly Ash, Cem. Con. Res., 1986, 16(2), p 227–238
R. Sugrañez, J.I. Álvarez, M. Cruz-Yusta, I. Mármol, J. Morales, and L. Sánchez, Controlling Microstructure in Cement Based Mortars by Adjusting the Particle Size Distribution of the Raw Materials, Constr. Build. Mater., 2013, 41, p 139–145
Y.K. Cho, S.H. Jung, and Y.C. Choi, Effects of Chemical Composition of Fly Ash on Compressive Strength of Fly Ash Cement Mortar, Constr. Build. Mater., 2019, 204, p 255–264
B.Q. Dong, Y.S. Wu, X.J. Teng, Z.T. Zhuang, Z.T. Gu, J.C. Zhang, F. Xing, and S.X. Hong, Investigation of the Cl Migration Behavior of Cement Materials Blended with Fly Ash or/and Slag Via the Electrochemical Impedance Spectroscopy Method, Constr. Build. Mater., 2019, 211, p 261–270
D. Sathyan and K.B. Anand, Influence of Superplasticizer Family on the Durability Characteristics of Fly Ash Incorporated Cement Concrete, Constr. Build. Mater., 2019, 204, p 864–874
M. Alexander, P. Ursula, S. Dietmar, and K. Konstantin, Influence of Mechanical Activation of Fly Ash in Presence of Polynaphthalene Sulfonate Superplasticizer on Rheology and Hydration Kinetics of Cement—Fly Ash Pastes, Constr. Build. Mater., 2019, 210, p 80–390
O. Burgos-Montes, M. Palacios, P. Rivilla, and F. Puertas, Compatibility Between Superplasticizer Admixtures and Cements with Mineral Additions, Constr. Build. Mater., 2012, 31, p 300–309
Marchon, D., Flatt, R. J. Impact of Chemical Admixtures on Cement Hydration. In: Woodhead Publishing. Science and Technology of Concrete. Elsevier Ltd, 2016, p 279–304.
M. Farzad, S. Vute, and V. Kirk, The Effect of Fly Ash Fineness on Heat of Hydration, Microstructure, Flow and Compressive Strength of Blended Cement Pastes, Case Stud. Constr. Mater., 2019, 10, p e00218
Mokrane, B., Rachid, Z., Pascal, B. Parameter Determination of the Compressible Packing Model (CPM) for Concrete Application. Powder Technol, 2019.