Effect of Fluid Bypassing on the Experimentally Obtained Darcy and Non-Darcy Permeability Parameters of Ceramic Foam Filters

Shahin Akbarnejad1, Mohsen Saffari Pour1, Lage Jonsson1, Pär G. Jönsson1
1Department of Materials Science and Engineering, Royal Institute of Technology (KTH), Stockholm, Sweden

Tóm tắt

Abstract Ceramic foam filters (CFFs) are used to remove solid particles and inclusions from molten metal. In general, molten metal which is poured on the top of a CFF needs to reach a certain height to build the required pressure (metal head) to prime the filter. To estimate the required metal head, it is necessary to obtain permeability coefficients using permeametry experiments. It has been mentioned in the literature that to avoid fluid bypassing, during permeametry, samples need to be sealed. However, the effect of fluid bypassing on the experimentally obtained pressure gradients seems not to be explored. Therefore, in this research, the focus was on studying the effect of fluid bypassing on the experimentally obtained pressure gradients as well as the empirically obtained Darcy and non-Darcy permeability coefficients. Specifically, the aim of the research was to investigate the effect of fluid bypassing on the liquid permeability of 30, 50, and 80 pores per inch (PPI) commercial alumina CFFs. In addition, the experimental data were compared to the numerically modeled findings. Both studies showed that no sealing results in extremely poor estimates of the pressure gradients and Darcy and non-Darcy permeability coefficients for all studied filters. The average deviations between the pressure gradients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 57.2, 56.8, and 61.3 pct. The deviations between the Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples found to be 9, 20, and 31 pct. The deviations between the non-Darcy coefficients of the sealed and unsealed 30, 50, and 80 PPI samples were calculated to be 59, 58, and 63 pct.

Từ khóa


Tài liệu tham khảo

M.D.M. Innocentini, V.R. Salvini, V.C. Pandolfelli, and J.R. Coury: Am. Ceram. Soc. Bull., 1999, p. 78.

M.V. Twigg and J.T. Richardson: Ind. Eng. Chem. Res., 2007, vol. 46, p. 4166.

F. Scheffler, P. Claus, S. Schimpf, M. Lucas, and M. Scheffler: in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, Wiley, Weinheim, 2005, pp. 454–83.

R.A. Olson and L.C.B. Martins: in Cellular Ceramics: Structure, Manufacturing, Properties and Applications, 2005, pp. 403–15.

L.J. Gibson and M.F. Ashby: Cellular Solids: Structure and Properties, Cambridge University Press, Cambridge, United Kingdom, 1999.

L. Montanaro, Y. Jorand, G. Fantozzi, and A. Negro: J. Eur. Ceram. Soc., 1998, vol. 18, p. 1339.

M.V. Twigg and J.T. Richardson: Chem. Eng. Res. Des., 2002, vol. 80, p. 183.

M.W. Kennedy, K. Zhang, R. Fritzsch, S. Akhtar, J.A. Bakken, and R.E. Aune: Metall. Mater. Trans. B, 2013, vol. 44B, p. 671.

S. Akbarnejad, M.W. Kennedy, R. Fritzsch, and R.E. Aune: in Light Met., 2015, p. 949.

R. Fritzsch, M.W. Kennedy, J.A. Bakken, and R.E. Aune: Miner. Met. Mater. Soc., 2013, pp. 973–79.

M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: Metall. Mater. Trans. B, 2013, vol. 44B, p. 691.

M.W. Kennedy, S. Akhtar, J.A. Bakken, and R.E. Aune: in Light Met., 2011, p. 763.

J.W. Brockmeyer and L.S. Aubrey: Ceram. Eng. Sci. Proc., 1987, vol. 8, p. 63.

M.W. Kennedy, R. Fritzsch, S. Akhtar, J.A. Bakken, and R.E. Aune: 2013, Metall. Mater. Trans. B 44(3), 671-690.

S. Akbarnejad, L. Jonsson, M.W. Kennedy, R.E. Aune, and P. Jönsson: Metall. Mater. Trans. B, 2016.

J. Banhart: Progr. Mater. Sci., 2001, vol. 46, p. 559.

M. Daniel, D.M. Innocentini, P. Sepulveda, and S. Ortega: in Cell. Ceram. Struct. Manuf. Prop. Appl., 2005, pp. 313–41.

F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure, Academic Press, Inc., Cambridge, MA, 1992.

P. Forchheimer: Z. Vereins Dtsch. Ing., 1901, p. 1781.

M.D.M. Innocentini, V.R. Salvini, and V.C. Pandolfelli: J. Am. Ceram. Soc., 1999, vol. 82, p. 1945.

M.D.M. Innocentini, P. Sepulveda, V.R. Salvini, V.C. Pandolfelli, and J.R. Coury: J. Am. Ceram. Soc., 1998, vol. 81, p. 3349.

J.P. Bonnet, F. Topin, and L. Tadrist: Transp. Porous Media, 2008, vol. 73, pp. 233–54.

B. Dietrich: Chem. Eng. Sci., 2012, vol. 74, p. 192.

A. Inayat, J. Schwerdtfeger, H. Freund, C. Körner, R.F. Singer, and W. Schwieger: Chem. Eng. Sci., 2011, vol. 66, p. 2758.

A. Banerjee, R. Bala Chandran, and J.H. Davidson: Appl. Therm. Eng., 2015, vol. 75, p. 889.

K.M. Gupta: US Patent No. 4,495,795, Jan. 29, 1985.

S. Akbar Shakiba, R. Ebrahimi, and M. Shams: J. Fluids Eng., 2011, vol. 133, p. 111105.

G. Incera Garrido, F.C. Patcas, S. Lang, and B. Kraushaar-Czarnetzki: Chem. Eng. Sci., 2008, vol. 63, p. 5202.

A. Bhattacharya, V.V. Calmidi, and R.L. Mahajan: Int. J. Heat Mass Transfer, 2002, vol. 45, p. 1017.

V.V. Calmidi and R.L. Mahajan: J. Heat Transfer, 2000, vol. 122, p. 557.

J. Paek, B. Kang, S. Kim, and J. Hyun: Int. J. Thermophys., 2000, 21(2), p. 453–64.

M.D.M. Innocentini, W.L. Antunes, J.B. Baumgartner, J.P.K. Seville, and J.R. Coury: Mater. Sci. Forum, 1999, vol. 19, pp. 299–300.

S. Ergun and A.A. Orning: Ind. Eng. Chem., 1949, vol. 41, p. 1179.

B.V. Antohe and J.L. Lage: Int. J. Heat Mass Transfer, 1997, vol. 40, p. 3013.

D. Getachew, W.J. Minkowycz, and J.L. Lage: Int. J. Heat Mass Transfer, 2009, vol. 42, p. 2909.

D.C. Wilcox: Turbulence Modelling for CFD, DCW Industeries, La Cañada Flintridge, CA, 1993.

F.M. White: Fluid Mechanics, 7th ed., McGraw-Hill, New York, NY, 2010.

P. Prinos, D. Sofialidis, and E. Keramaris: J. Hydraulic Eng., 2003, vol. 129, p. 720.

K. Vafai and S. Kim: Int. J. Heat Fluid Flow, 1990, vol. 11, p. 254.

K. Vafai and J. Kim: Int. J. Heat Fluid Flow, 1995, vol. 16, p. 11.

D.A. Nield: Int. J. Heat Fluid Flow, 1991, vol. 12, p. 269.

K. Vafai and C.L. Tien: Int. J. Heat Mass Transfer, 1981, vol. 24, p. 195.

J.R. Holton: An Introduction to Dynamic Meteorology, 4th ed., Elsevier, Amsterdam, 2004.

A. Amiri and K. Vafai: Int. J. Heat Mass Transfer, 1998, vol. 41, p. 4259.

A. Amiri and K. Vafai: Int. J. Heat Mass Transfer, 1994, vol. 37, p. 939.

S. Ergun: Chem. Eng. Progr., 1952, vol. 48, p. 89.

K. Vafai: J. Fluid Mech., 1984, vol. 147, p. 233.

N. Keegan, W. Schneider, and H. Krug: Light Metals, TMS, Warrendale, PA, 1999, pp. 1031–41.

J.T. Richardson, Y. Peng, and D. Remue: Appl. Catal. A Gen., 2000, vol. 204, p. 19.