Effect of Dopants on the Functional Properties of Lithium-Rich Cathode Materials for Lithium-Ion Batteries

Russian Journal of Inorganic Chemistry - Tập 66 - Trang 777-788 - 2021
L. S. Pechen1, E. V. Makhonina1, A. E. Medvedeva1, A. M. Rumyantsev2, Yu. M. Koshtyal3, Yu. A. Politov1, A. S. Goloveshkin4, I. L. Eremenko1
1Kurnakov Institute of General and Inorganic Chemistry, Russian Academy of Sciences, Moscow, Russia
2Ioffe Physicotechnical Institute, Russian Academy of Sciences, St. Petersburg, Russia
3Peter the Great St. Petersburg Polytechnical University, St. Petersburg, Russia
4Nesmeyanov Institute of Organometallic Compounds, Russian Academy of Sciences, Moscow, Russia

Tóm tắt

A comparative study was made of the effect of the dopant nature on the electrochemical performance of lithium-rich oxides of the general composition 0.5Li2MnO3⋅0.5LiMn0.33Ni0.33Co0.31M0.02O2 (M = Mg, Cr, Zr). The obtained materials were tested as cathodes in CR2032 coin-type cells versus lithium metal. The results of the study attested to the fact that the main role in the degradation of the material is played by the migration of transition metals, which depends on the dopant-oxygen binding energy. The doping with magnesium suppresses the phase transition, thus stabilizing the oxide structure. By the 110th cycle in the voltage range of 2.5–4.8 V at a current of 100 mA/g, the sample doped with magnesium retains 10% more specific energy than the initial oxide.

Tài liệu tham khảo

M. N. Ates, S. Mukerjee, and K. M. Abraham, J. Electrochem. Soc. 161, A355 (2014). https://doi.org/10.1149/2.070403jes R. Robert, C. Villevieille, and P. Novák, J. Mater. Chem. A 2, 8589 (2014). https://doi.org/10.1039/c3ta12643a B. J. Liddle, S. M. Collins, and B. M. Bartlett, Energy Environ. Sci. 3, 1339 (2010). https://doi.org/10.1039/c0ee00059k G. A. Buzanov, N. P. Simonenko, K. Y. Zhizhin, et al., Russ. J. Inorg. Chem. 64, 1482 (2019). https://doi.org/10.1134/S0036023619120040 X. Feng, Z. Yang, D. Tang, et al., Phys. Chem. Chem. Phys. 17, 1257 (2015). https://doi.org/10.1039/C4CP04087B B. R. Long, J. R. Croy, J. S. Park, et al., J. Electrochem. Soc. 161, A2160 (2014). https://doi.org/10.1149/2.0681414jes R. Wang, X. Li, L. Liu, et al., Electrochem. Commun. 60, 70 (2015). https://doi.org/10.1016/j.elecom.2015.08.003 Z. Yu, X. Qu, A. Dou, et al., ACS Appl. Mater. Interfaces 11, 35777 (2019). https://doi.org/10.1021/acsami.9b12822 T. Ohzuku, M. Nagayama, K. Tsuji, et al., J. Mater. Chem. 21, 10179 (2011). https://doi.org/10.1039/c0jm04325g P. Rozier and J. M. Tarascon, J. Electrochem. Soc. 162, A2490 (2015). https://doi.org/10.1149/2.0111514jes A. Manthiram, J. C. Knight, S.-T. Myung, et al., Adv. Energy Mater. 6, 1501010 (2016). https://doi.org/10.1002/aenm.201501010 J. Wang, X. He, E. Paillard, et al., Adv. Energy Mater. 6, 1600906 (2016). https://doi.org/10.1002/aenm.201600906 G. D. Nipan, M. N. Smirnova, D. Y. Kornilov, et al., Russ. J. Inorg. Chem. 65, 573 (2020). https://doi.org/10.1134/S0036023620040130 Z. Lu, D. D. MacNeil, J. R. Dahn, Electrochem. Solid-State Lett. 4, A191 (2001). https://doi.org/10.1149/1.1407994 Z. Lu, L. Y. Beaulieu, R. A. Donaberger, et al., J. Electrochem. Soc. 149, A778 (2002). https://doi.org/10.1149/1.1471541 M. M. Thackeray, S.-H. Kang, C. S. Johnson, et al., J. Mater. Chem. 17, 3112 (2007). https://doi.org/10.1039/b702425h C. S. Johnson, N. Li, C. Lefief, et al., Electrochem. Commun. 9, 787 (2007). https://doi.org/10.1016/j.elecom.2006.11.006 A. D. Robertson and P. G. Bruce, Chem. Mater. 15, 1984 (2003). https://doi.org/10.1021/cm030047u A. R. Armstrong, M. Holzapfel, P. Nová, et al., JACS 128, 8694 (2006). https://doi.org/10.1021/ja062027 C. R. Fell, D. Qian, K. J. Carroll, et al., Chem. Mater. 25, 1621 (2013). https://doi.org/10.1021/cm4000119 M. Sathiya, G. Rousse, K. Ramesha, et al., Nat. Mater. 12, 827 (2013). https://doi.org/10.1038/nmat3699 G. Assat, A. Iadecola, C. Delacourt, et al., Chem. Mater. 29, 9714 (2017). https://doi.org/10.1021/acs.chemmater.7b03434 E. McCalla, A. M. Abakumov, M. Saubanere, et al., Science 350, 1516 (2015). https://doi.org/10.1126/science.aac8260 L. S. Pechen, E. V. Makhonina, A. M. Rumyantsev, et al., Russ. J. Inorg. Chem. 63, 1534 (2018). https://doi.org/10.1134/S0036023618120173 E. V. Makhonina, L. S. Pechen, V. V. Volkov, et al., Russ. Chem. Bull. 68, 301 (2019). https://doi.org/10.1007/s11172-019-2386-6 L. S. Pechen, E. V. Makhonina, A. M. Rumyantsev, et al., Russ. Chem. Bull. 68, 293 (2019). https://doi.org/10.1007/s11172-019-2385-7 W. Qi-Hui, A. Thissen, and W. Jaegermann, Chin. Phys. Lett. 23, 2202 (2006). https://doi.org/10.1088/0256-307X/23/8/066 A. G. Kochur, T. M. Ivanova, A. V. Shchukarev, et al., Bull. Russ. Acad. Sci. Phys. 74, 625 (2010). https://doi.org/10.3103/S1062873810050126 A. W. Moses, H. G. G. Flores, J.-G. Kim, et al., Appl. Surf. Sci. 253, 4782 (2007). https://doi.org/10.1016/j.apsusc.2006.10.044 M. C. Biesinger, B. P. Payne, A. P. Grosvenor, et al., Appl. Surf. Sci. 257, 2717 (2011). https://doi.org/10.1016/j.apsusc.2010.10.051 https://srdata.nist.gov/xps/main_search_menu.aspx. A. Apte, V. Tare, and P. Bose, J. Hazard. Mater. 128, 164 (2006). https://doi.org/10.1016/j.jhazmat.2005.07.057 A. R. Armstrong, N. Dupre, A. J. Paterson, et al., Chem. Mater. 16, 3106 (2004). https://doi.org/10.1021/cm034964b M. M. Thackeray, Prog. Solid State Chem. 25, 1 (1997). https://doi.org/10.1016/S0079-6786(97)81003-5 U. Nisar, R. Amin, A. Shakoor, et al., Emergent Mater. 1, 155 (2018). https://doi.org/10.1007/s42247-018-0014-0 I. R. Mangani, C. W. Park, Y. K. Yoon, et al., J. Electrochem. Soc. 154, A359 (2007). https://doi.org/10.1149/1.2509096 W. Wang, J. Meng, X. Yue, et al., Chem. Commun. 54, 13809 (2018). https://doi.org/10.1039/C8CC07660J Y. Sun, H. Cong, L. Zan, et al., ACS Appl. Mater. Interfaces 9, 38545 (2017). https://doi.org/10.1021/acsami.7b12080 Z. Huang, T. Xiong, X. Lin, et al., J. Power Sources 432, 8 (2019). https://doi.org/10.1016/j.jpowsour.2019.05.069