Effect of Cu/Zn Substitution in MgO Nanostructures for Tuning the Optical Bandgap and Structural Properties

Dawar Atif1, Shah S Naseem1, Siddiqui M Asif1, Bibi Yasmeen2
1Department of Physics, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan
2Department of Chemistry, Federal Urdu University of Arts, Science and Technology, Karachi, Pakistan

Tóm tắt

Low cost co-precipitation method was used to synthesize Cu (0–0.05) doped MgO samples with fixed concertation of Zn=0.01. X-ray diffraction (XRD) spectra confirmed the phase purity of the samples for 0⩽Cu⩽0.03 doping concentration. The secondary phase for 0.04⩽Cu⩽0.05 exhibited the formation of mixed metal oxides. The crystallite size was found to increase from 17.5 to 23.5 nm for 0⩽Cu⩽0.03 and then decreased from 22 to 18.5 nm for 0.04⩽Cu⩽0.05. The estimated bandgap first reduced from 5.48 to 4.88 eV and then increased from 5.21 to 5.36 eV. The morphology of the samples transformed from spheroidal shape to star-like shape. The obtained results reveal that the structural and optical property are in good agreement with the morphological transition. The peak shifting towards the lower values of vibrational frequency from 694 to 579 cm−1 confirms the incorporation of Cu/Zn in Mg-O lattice. The tuning of optical bandgap and structural properties with varying dopant concentration in MgO nanomaterials can be used for multifunctional modern energy storage and optoelectronic devices.

Tài liệu tham khảo

Reynolds DC, Look DC, Jogai B. Optically Pumped Ultraviolet Lasing from ZnO[J]. Solid State Commun., 1996, 99(12): 873–875 Ohta H, Kawamura KI, Orita M, et al. Current injection Emission from a Transparent p-n Junction Composed of p-SrCu2O2n-ZnO[J]. Appl. Phys. Lett. Lett., 2000, 77(4): 475–477 Oh JY, Lim SC, Ahn SD, et al. Facile One-step Synthesis of Magnesium-doped ZnO Nanoparticles: Optical Properties and Their Device Applications[J]. J. Phys. D: Appl. Phys., 2013, 46(28): 285 101 Ghashang M, Mansoor SS, Mohammad Shafiee MR, et al. Green Chemistry Preparation of MgO Nanopowders: Efficient Catalyst for the Synthesis of Thiochromeno[4,3-b]pyran and Thiopyrano[4,3-b] Pyran Derivatives[J]. J. Sulfur Chem., 2016, 37(4): 377–390 Huang L, Li DQ, Lin YJ, et al. Controllable Preparation of Nano-MgO and Investigation of Its Bactericidal Properties[J]. J. Inorg. Bichem., 2005, 99(5): 986–987 Ouraipryvan P, Sreethawong T, Chavadej S. Synthesis of Crystalline MgO Nanoparticle with Mesoporous-assembled Structure via a Surfactant-modified Sol-gel Process[J]. Mater. Lett., 2009, 63(21): 1 862–1 865 Lu L, Zhang L, Zhang X, et al. A MgO Nanoparticles Composite Matrix-based Electrochemical Biosensor for Hydrogen Peroxide with High Sensitivity[J]. Electroanalysis: An Int. J. of Devoted to Fund. & Practical Aspects of Electroanalysis, 2010, 22(4): 471–477 Umar A, Rahman MM, Hahn YB. MgO Polyhedral Nanocages and Nanocrystals based Glucose Biosensor[J]. Electrochem. Commun., 2009, 11(7): 1 353–1 357 Selvamani T, Sinhamahapatra A, Bhattacharjya D, et al. Rectangular MgO Microsheets with Strong Catalytic Activity[J]. Mater. Chem. Phys., 2011, 129(3): 853–861 Suresh S, Arivuoli D. Synthesis and Characterization of Pb+ Doped MgO Nanocrystalline Particles[J]. Digest J. Nanomater & Biostruct., 2011, 6(4): 1 597–1 603 Nagappa B, Chandrappa GT. Mesoporous Nanocrystalline Magnesium Oxide for Environmental Remediation[J]. Microporous Mesoporous Mater., 2007, 106(1–3): 212–218 Blochwitz J, Fritz T, Pfeiffer M, et al. Interface Electronic Structure of Organic Semiconductors with Controlled Doping Levels[J]. Organ. Electron., 2001, 2(2): 97–104 Kumar S, Alharthi FA, Ahmed F, et al. Role of Fe Doping on Surface Morphology, Electronic Structure and Magnetic Properties of Fe Doped CeO2 Thin Film[J]. Ceram. Int., 2021, 47(3): 4 012–4 019 Yu HK. Secondary Electron Emission Properties of Zn-doped MgO Thin Films Grown via Electron-beam Evaporation[J]. Thin Solid Films, 2018, 653: 57–61 Yoshikawa A, Matsunami H, Nanishi Y. Development and Applications of Wide Bandgap Semiconductors[M]. Springer, Berlin, Heidelberg, 2007: 1–24 Lian J, Zhang C, Li Q, Ng DH. Mesoporous (ZnO)x(MgO)1−x Nanoplates: Template-free Solvothermal Synthesis, Optical Properties, and Their Applications in Water Treatment[J]. Nanoscale, 2013, 5(23): 11 672–11 678 Shimpi P, Gao PX, Goberman DG, Ding Y. Low Temperature Synthesis and Characterization of MgO/ZnO Composite Nanowire Arrays[J]. Nanotechnology, 2009, 20(12): 125 608 Li LX, Xu D, Li XQ, et al. Excellent Fluoride Removal Properties of Porous Hollow MgO Microspheres[J]. New J. Chem., 2014, 38(11): 5 445–5 452 Lee HJ, Kim BS, Cho CR, Jeong SY. A Study of Magnetic and Optical Properties of Cu-doped ZnO[J]. Phys. Status Solidi B., 2004, 241(7): 1 533–1 536 Alqadi MK, Migdadi AB, Alzoubi FY, et al. Influence of (Ag-Cu) Co-doping on the Optical, Structural, Electrical, and Morphological Properties of ZnO Thin Films[J]. J. Solgel. Sci. Technol., 2022, 1–16 Wang B, Tang L, Peng S, et al. Structural, Optical and Electrical Properties of Li-doped ZnO Thin Films Influenced by Annealing Temperature[J]. J. Wuhan Univ. Technol. -Mater. Sci. Ed., 2014, 29(5): 873–876 Cui H, Wu X, Chen Y, et al. Influence of Copper Doping on Adsorption and Antibacterial Behaviour of MgO Prepared by Co-precipitation[J]. Mater. Res. Bull., 2015, 61: 511–518 Ye LH, Freeman AJ, Delley B. Half-metallic Ferromagnetism in Cu-doped ZnO: Density Functional Calculations[J]. Phys. Rev. B, 2006, 73(3): 033203 Muthukumaran S, Gopalakrishnan R. Structural, FTIR and Photoluminescence Studies of Cu Doped ZnO Nanopowders by Co-precipitation Method[J]. Opt. Mater., 2012, 34(11): 1 946–1 953 Ahmed F, Kumar S, Arshi N, et al. Morphological Evolution between Nanorods to Nanosheets and Room Temperature Ferromagnetism of Fe-doped ZnO Nanostructures[J]. Cryst. Eng. Comm., 2012, 14(11): 4 016–4 026 Singh AK. Synthesis, Characterization, Electrical and Sensing Properties of ZnO Nanoparticles[J]. Adv. Powder Technol., 2010, 21(6): 609–613 Ashar A, Iqbal M, Bhatti IA, et al. Synthesis, Characterization and Photocatalytic Activity of ZnO Flower and Pseudo-sphere: Nonylphenol Ethoxylate Degradation under UV and Solar Irradiation[J]. J. Alloys Compd., 2016, 678: 126–136 Tauc J, Grigorovici R, Vancu A. Optical Properties and Electronic Structure of Amorphous Germanium[J]. Phys. Status Solidi B, 1966, 15(2): 627–637 Kadam AN, Kim TG, Shin DS, et al. Morphological Evolution of Cu Doped ZnO for Enhancement of Photocatalytic Activity[J]. J. Alloys Compd., 2017, 710: 102–113 Dai J, Suo Z, Li Z, et al. Effect of Cu/Al Doping on Electronic Structure and Optical Properties of ZnO[J]. Results Phys., 2019, 15: 102649 Khan SA, Khan NZ, Xie Y, et al. Development of Narrow Band Emitting Phosphors for Backlighting Displays and Solid State Lighting Using a Clean and Green Energy Technology[J]. J. Lumin., 2022, 243: 118 650 Ferhat M, Zaoui A, Ahuja R. Magnetism and Band Gap Narrowing in Cu-doped ZnO[J]. Appl. Phys. Lett., 2009, 94(14): 142 502 Rama Krishna MV, Friesner RA. Quantum Confinement Effects in Semiconductor Clusters[J]. J. Chem. Phys., 1991, 95(11): 8 309–8 322 Tosun M, Senol SD, Arda L. Effect of Mn/Cu Co-doping on the Structural, Optical and Photocatalytic Properties of ZnO Nanorods[J]. J. Mol. Struct., 2020, 1212: 128 071 Raja K, Ramesh PS, Geetha D. Structural, FTIR and Photoluminescence Studies of Fe Doped ZnO Nanopowder by Co-precipitation Method[J]. Spectrochim. Acta A Mol. Biomol. Spectrosc., 2014, 131: 183–188 Ashokkumar M, Muthukumaran S. Microstructure, Optical and FTIR Studies of Ni, Cu Co-doped ZnO Nanoparticles by Co-precipitation Method[J]. Opt. Mater., 2014, 37: 671–678