Tác động của phụ gia CaO đến tính chất của lớp phủ oxi hóa điện phân plasma trên hợp kim Mg AZ31

Maryam Rahmati1,2, Roya Saidi1, Keyvan Raeissi1, Amin Hakimizad3
1Department of Materials Engineering, Isfahan University of Technology, Isfahan, Iran
2Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
3Science and Technology Campus, Yekta Mobaddel Pars Co, Yazd University, Yazd, Iran

Tóm tắt

Hợp kim magie được coi là ứng cử viên phù hợp cho các cấy ghép trong cơ thể do những tính chất thuận lợi như không độc hại và tính chất cơ học tốt. Hạn chế là tốc độ ăn mòn cao của chúng trong môi trường sinh lý của cơ thể. Trong nghiên cứu này, lớp phủ PEO đã được áp dụng từ bath dựa trên phosphate với và không có phụ gia hạt nano CaO trên hợp kim Mg AZ31 sử dụng sóng đơn cực và sóng lưỡng cực cùng với sóng phóng điện nhẹ. Chu kỳ catot dẫn đến sự thâm nhập của nhiều canxi hơn, và một lớp phủ đã được hình thành với hoạt tính sinh học cao hơn và kích thước lỗ nhỏ hơn. Tuy nhiên, việc tích hợp canxi đã cho thấy những tác động tiêu cực đến khả năng chống ăn mòn của các lớp phủ trong quá trình ngâm ngắn hạn (3 giờ) trong dịch thể mô phỏng cơ thể (SBF) do tạo ra lớp phủ mỏng hơn và nhiều vết nứt vi mô hơn. Tuy nhiên, những lớp phủ này có khả năng thể hiện hiệu suất rào cản cao hơn đối với dung dịch ăn mòn trong quá trình ngâm dài hạn (lớn hơn 1 ngày), nhờ vào khả năng hình thành phosphate canxi cao hơn và khắc phục các khuyết tật của lớp phủ. Bằng cách tăng chiều rộng catot trong sóng lưỡng cực, các phóng điện catot cường độ cao đã xảy ra trên bề mặt lớp phủ, gây thiệt hại cho lớp phủ và tạo ra hiện tượng bong tróc, làm giảm hiệu suất rào cản của lớp phủ.

Từ khóa

#Hợp kim magie #lớp phủ oxi hóa điện phân plasma #phụ gia CaO #hoạt tính sinh học #ăn mòn.

Tài liệu tham khảo

M. Niinomi, Recent Research and Development in metallic Materials for Biomedical, Dental and Healthcare Products Applications, Mater. Sci. Forum, 2007, 539–543, p 193–200. https://doi.org/10.4028/0-87849-428-6.193 G. Eddy-Jai-Poinern, S. Brundavanam, and D. Fawcett, Biomedical Magnesium Alloys: A Review of Material Properties, Surface Modifications and Potential as a Biodegradable Orthopaedic Implant, Am. J. Biomed. Eng., 2013, 2, p 218–240. https://doi.org/10.5923/j.ajbe.20120206.02 X. Lu, C. Blawert, M. Mohedano, N. Scharnagl, M.L. Zheludkevich, and K.U. Kainer, Influence of Electrical Parameters on Particle Uptake During Plasma Electrolytic Oxidation Processing of AM50 Mg Alloy, Surf. Coatings Technol., 2016, 289, p 179–185. https://doi.org/10.1016/j.surfcoat.2016.02.006 X. Shi, Y. Wang, H. Li, S. Zhang, R. Zhao, G. Li, R. Zhang, Y. Sheng, S. Cao, Y. Zhao, L. Xu, and Y. Zhao, Corrosion resistance and biocompatibility of Calcium-Containing Coatings Developed in near-Neutral Solutions Containing Phytic Acid and Phosphoric Acid on AZ31B Alloy, J. Alloys Compd., 2020, 823, 153721. https://doi.org/10.1016/j.jallcom.2020.153721 L. Chang, L. Tian, W. Liu, and X. Duan, Formation of Dicalcium Phosphate Dihydrate on Magnesium Alloy by Micro-Arc Oxidation Coupled with Hydrothermal Treatment, Corros. Sci., 2013, 72, p 118–124. https://doi.org/10.1016/j.corsci.2013.03.017 J. Dou, G. Gu, and C. Chen, Effects of Calcium Salts on Microstructure and Corrosion Behavior of micro-Arc Oxidation Coatings on Mg-2Zn-1Ca-0.8 Mn Alloy, Mater. Lett., 2017, 196, p 42–45. https://doi.org/10.1016/j.matlet.2017.03.028 E. Ziyaei, M. Atapour, H. Edris, and A. Hakimizad, Corrosion Behavior of PEO Coatings Formed on AZ31 Alloy in Phosphate-Based Electrolytes with Calcium Acetate Additive, J. Mater. Eng. Perform., 2017, 26, p 3204–3215. https://doi.org/10.1007/s11665-017-2765-9 H. Tang, Y. Han, T. Wu, W. Tao, X. Jian, Y. Wu, and F. Xu, Synthesis and Properties of Hydroxyapatite-Containing Coating on AZ31 Magnesium Alloy by Micro-arc Oxidation, Appl. Surf. Sci., 2017, 400, p 391–404. https://doi.org/10.1016/j.apsusc.2016.12.216 Z. Yao, L. Li, and Z. Jiang, Adjustment of the Ratio of Ca/P in the Ceramic Coating on Mg Alloy by Plasma Electrolytic Oxidation, Appl. Surf. Sci., 2009, 255, p 6724–6728. https://doi.org/10.1016/j.apsusc.2009.02.082 Y. Gao, A. Yerokhin, E. Parfenov, and A. Matthews, Application of Voltage Pulse Transient Analysis During Plasma Electrolytic Oxidation for assessment of Characteristics and Corrosion Behaviour of Ca- and P-Containing Coatings on Magnesium, Electrochim. Acta, 2014, 149, p 218–230. https://doi.org/10.1016/j.electacta.2014.10.063 A. Santos-Coquillat, M. Esteban-Lucia, E. Martinez-Campos, M. Mohedano, R. Arrabal, C. Blawert, M.L. Zheludkevich, and E. Matykina, PEO Coatings Design for Mg-Ca Alloy for Cardiovascular Stent and Bone Regeneration Applications, Mater. Sci. Eng. C, 2019, 105, 110026. https://doi.org/10.1016/j.msec.2019.110026 Y. Zhu, W. Gao, H. Huang, W. Chang, S. Zhang, R. Zhang, R. Zhao, and Y. Zhang, Investigation of Corrosion Resistance and Formation Mechanism of Calcium-Containing Coatings on AZ31B Magnesium Alloy, Appl. Surf. Sci., 2019, 487, p 581–592. https://doi.org/10.1016/j.apsusc.2019.05.049 R.F. Zhang, Y.Q. Zhang, S.F. Zhang, B. Qu, S.B. Guo, and J.H. Xiang, Formation Process of Micro Arc Oxidation Coatings Obtained in a Sodium Phytate Containing Solution with and without CaCO3 on Binary Mg-1.0Ca Alloy, Appl. Surf. Sci., 2015, 325, p 79–85. https://doi.org/10.1016/j.apsusc.2014.10.127 A.B. Khiabani, A. Ghanbari, B. Yarmand, A. Zamanian, and M. Mozafari, Improving Corrosion Behavior and in Vitro Bioactivity of Plasma Electrolytic Oxidized AZ91 Magnesium Alloy Using Calcium Fluoride Containing Electrolyte, Mater. Lett., 2018, 212, p 98–102. https://doi.org/10.1016/j.matlet.2017.10.072 J. Yang, X. Lu, C. Blawert, S. Di, and M.L. Zheludkevich, Microstructure and Corrosion Behavior of Ca/P Coatings Prepared on Magnesium by Plasma Electrolytic Oxidation, Surf. Coatings Technol., 2017, 319, p 359–369. https://doi.org/10.1016/j.surfcoat.2017.04.001 H. Ma, Y. Gu, S. Liu, J. Che, and D. Yang, Local Corrosion Behavior and Model of Micro-Arc Oxidation HA Coating on AZ31 Magnesium Alloy, Surf. Coatings Technol., 2017, 331, p 179–188. https://doi.org/10.1016/j.surfcoat.2017.10.053 L. Chen, Y. Gu, L. Liu, S. Liu, B. Hou, Q. Liu, and H. Ding, Effect of Ultrasonic Cold Forging Technology as the Pretreatment on the Corrosion Resistance of MAO Ca/P Coating on AZ31B Mg Alloy, J. Alloys Compd., 2015, 635, p 278–288. https://doi.org/10.1016/j.jallcom.2015.02.086 J. Dou, C. Wang, G. Gu, and C. Chen, Formation of Silicon-Calcium-Phosphate-Containing Coating on Mg-Zn-Ca Alloy by a Two-Step Micro-Arc Oxidation Technique, Mater. Lett., 2018, 212, p 37–40. https://doi.org/10.1016/j.matlet.2017.10.070 Y. Gao, A. Yerokhin, and A. Matthews, Effect of Current Mode on PEO Treatment of Magnesium in Ca- and P-Containing Electrolyte and Resulting Coatings, Appl. Surf. Sci., 2014, 316, p 558–567. https://doi.org/10.1016/j.apsusc.2014.08.035 E. Matykina, I. Garcia, R. Arrabal, M. Mohedano, B. Mingo, J. Sancho, M.C. Merino, and A. Pardo, Role of PEO Coatings in Long-Term Biodegradation of a Mg Alloy, Appl. Surf. Sci., 2016, 389, p 810–823. https://doi.org/10.1016/j.apsusc.2016.08.005 M. Tang, Z. Feng, G. Li, Z. Zhang, and R. Zhang, High-corrosion Resistance of the Microarc Oxidation Coatings on Magnesium Alloy Obtained in Potassium Fluotitanate Electrolytes, Surf. Coatings Technol., 2015, 264, p 105–113. https://doi.org/10.1016/j.surfcoat.2015.01.013 L. Chang, Growth Regularity of Ceramic Coating on Magnesium Alloy by Plasma Electrolytic Oxidation, J. Alloys Compd., 2009, 468, p 462–465. https://doi.org/10.1016/j.jallcom.2008.01.069 B. Han, Y. Yang, J. Li, H. Deng, and C. Yang, Effects of the Graphene Additive on the Corrosion Resistance of the Plasma Electrolytic Oxidation (PEO) Coating on the AZ91 Magnesium Alloy, Int. J. Electrochem. Sci., 2018, 13, p 9166–9182. https://doi.org/10.20964/2018.09.06 L. Wang, L. Chen, Z. Yan, H. Wang, and J. Peng, Effect of potassium Fluoride on Structure and Corrosion Resistance of plasma Electrolytic Oxidation Films Formed on AZ31 Magnesium Alloy, J. Alloys Compd., 2009, 480, p 469–474. https://doi.org/10.1016/j.jallcom.2009.01.102 M. Ali-Heydarian, A. Atapour, and K. Hakimizad, Raeiss, The Effects of Anodic Amplitude and Waveform of Applied Voltage on Characterization and Corrosion Performance of the Coatings Grown by Plasma Electrolytic Oxidation on AZ91 Mg Alloy from an Aluminate, Bath Surf. Coat. Technol., 2020, 383, p 125235. https://doi.org/10.1016/j.matdes.2020.108947 S. Wang, Y. Xia, L. Liu, and N. Si, Preparation and Performance of MAO Coatings Obtained on AZ91D Mg Alloy Under Unipolar and Bipolar Modes in a Novel Dual Electrolyte, Ceram. Int., 2014, 40, p 93–99. https://doi.org/10.1016/j.ceramint.2013.05.108 A. Nomine, J. Martin, C. Noël, T. Belmonte, I.V. Bardin, and P. Lukes, Surface Charge at the Oxide / Electrolyte Interface: Toward Optimization of Electrolyte Composition for Treatment of Aluminu and Magnesium by Plasma Electrolytic Oxidation, Langmuir, 2016 https://doi.org/10.1021/acs.langmuir.5b03873 S.C. Troughton and T.W. Clyne, Cathodic discharges During High Frequency Plasma Electrolytic Oxidation, Surf. Coatings Technol., 2018, 352, p 591–599. https://doi.org/10.1016/j.surfcoat.2018.08.049 A.B. Rogov, A. Yerokhin, and A. Matthews, The Role of Cathodic Current in Plasma Electrolytic Oxidation of Aluminum: Phenomenological Concepts of the “soft sparking,” Mode. Prepr. Langmuir., 2017 https://doi.org/10.1021/acs.langmuir.7b02284 Y.L. Cheng, Z.G. Xue, Q. Wang, X.Q. Wu, E. Matykina, P. Skeldon, and G.E. Thompson, New fiNdings on Properties of plasma Electrolytic Oxidation Coatings From Study of an Al-Cu-Li Alloy, Electrochim. Acta, 2013, 107, p 358–378. https://doi.org/10.1016/j.electacta.2013.06.022 M. Mohedano, R. Arrabal, B. Mingo, A. Pardo, and E. Matykina, Role of Particle Type and Concentration on Characteristics of PEO Coatings on AM50 Magnesium Alloy, Surf. Coatings Technol., 2018, 334, p 328–335. https://doi.org/10.1016/j.surfcoat.2017.11.058 L. Wang, L. Chen, Z. Yan, H. Wang, and J. Peng, The Influence of Additives on the Stability Behavior of Electrolyte, Discharges and PEO Films Characteristics, 2010, 493, p 445–452. https://doi.org/10.1016/j.jallcom.2009.12.123 D.-S. Tsai and C.-C. Chou, Review of the Soft Sparking Issues in Plasma Electrolytic Oxidation, Metals (Basel)., 2018, 8, p 105–127. https://doi.org/10.3390/met8020105 Z.U. Rehman, S.H. Shin, I. Hussain, and B.H. Koo, Investigation of Hybrid PEO Coatings on AZ31B Magnesium Alloy in Alkaline K2ZrF6–Na2SiO3 Electrolyte Solution, Prot. Met. Phys. Chem. Surfaces., 2017, 53, p 495–502. https://doi.org/10.1134/S2070205117030194 J. Liang, L. Hu, and J. Hao, Characterization of Microarc Oxidation Coatings Formed on AM60B Magnesium Alloy in Silicate and Phosphate Electrolytes, Appl. Surf. Sci., 2007, 253, p 4490–4496. https://doi.org/10.1016/j.apsusc.2006.09.064 X.Y. Liu, D.W. Shoesmith, V. Dehnavi, B.L. Luan, and S. Rohani, Correlation between plasma Electrolytic Oxidation Treatment Stages and Coating Microstructure on Aluminum Under Unipolar Pulsed DC Mode, Surf. Coatings Technol., 2014, 269, p 91–99. https://doi.org/10.1016/j.surfcoat.2014.11.007 Y. Gun, S. Namgung, and D. Hyuk, Correlation Between KOH Concentration and Surface Properties of AZ91 Magnesium Alloy Coated by Plasma Electrolytic Oxidation, Surf. Coat. Technol., 2010, 205, p 2525–2531. https://doi.org/10.1016/j.surfcoat.2010.09.055 X. Lu, M. Schieda, C. Blawert, K.U. Kainer, and M.L. Zheludkevich, Formation of Photocatalytic Plasma Electrolytic Oxidation Coatings on Magnesium Alloy by Incorporation of TiO2 Particles, Surf. Coatings Technol., 2016, 307, p 287–291. https://doi.org/10.1016/j.surfcoat.2016.09.006 X. Lu, C. Blawert, N. Scharnagl, and K.U. Kainer, Influence of Incorporating Si3N4 Particles into the Oxide Layer Produced by Plasma Electrolytic Oxidation on AM50 Mg Alloy on Coating Morphology and corrosion Properties, J. Magnes. Alloy., 2013, 1, p 267–274. https://doi.org/10.1016/j.jma.2013.11.001 M. Rahmati, K. Raeissi, M. RezaToroghinejad, A. Hakimizad, and M. Santamaria, The Multi-effects of K2TiF6 Additive on the Properties of PEO Coatings on AZ31 Mg Alloy, Surface Coat Technol, 2020, 402, p 126296. https://doi.org/10.1016/j.surfcoat.2020.126296 F. Liu, J. Yu, Y. Song, D. Shan, and E.H. Han, Effect of Potassium Fluoride on the In-Situ Sealing Pores of Plasma Electrolytic Oxidation Film on AM50 Mg Alloy, Mater. Chem. Phys., 2015, 162, p 452–460. https://doi.org/10.1016/j.matchemphys.2015.06.014 S. Kilic, G. Toprak, and E. Ozdemir, Stability of CaCO3 in Ca(OH)2 Solution, Int. J. Miner. Process., 2016, 147, p 1–9. https://doi.org/10.1016/j.minpro.2015.12.006 G. Lv, H. Chen, W. Gu, L. Li, and E. Niu, Effects of Current Frequency on the Structural Characteristics and Corrosion Property of Ceramic Coatings formed on Magnesium Alloy by PEO Technology, J. Mater. Process. Technol., 2008, 8, p 9–13. https://doi.org/10.1016/j.jmatprotec.2007.12.125 R.O. Hussein, D.O. Northwood, and X. Nie, Processing-Microstructure Relationships in the Plasma Electrolytic Oxidation (PEO) Coating of a Magnesium Alloy, Mater. Sci. Appl., 2014, 05, p 124–139. https://doi.org/10.4236/msa.2014.53017 W. Zhang, B. Tian, K.Q. Du, H.X. Zhang, and F.H. Wang, Preparation and Corrosion Performance of PEO Coating with Low Porosity on Magnesium Alloy AZ91D in Acidic KF System, Int. J. Electrochem. Sci., 2011, 6, p 5228–5248. M. Rahmati, K. Raeissi, M.R. Toroghinejad, A. Hakimizad, and M. Santamaria, Effect of Pulse Current Mode on Microstructure, Composition and Corrosion Performance of the Coatings Produced by Plasma Electrolytic Oxidation, Coatings, 2019, 9, p 688–707. https://doi.org/10.3390/coatings9100688 M. Curioni, L. Salamone, F. Scenini, M. Santamaria, and M. Di Natale, A Mathematical Description Accounting for the Superfluous Hydrogen Evolution and the Inductive Behaviour Observed During Electrochemical Measurements on Magnesium, Electrochim. Acta, 2018, 274, p 343–352. https://doi.org/10.1016/j.electacta.2018.04.116 R. Mann, W.E.G. Hansal, and S. Hansal, Effects of Pulsed Current on Plasma Electrolytic Oxidation, Trans. Inst. Met. Finish., 2014, 92, p 297–304. https://doi.org/10.1179/0020296714Z.000000000206 V. Shkirskiy, A.D. King, O. Gharbi, P. Volovitch, J.R. Scully, K. Ogle, and N. Birbilis, Revisiting the Electrochemical Impedance Spectroscopy of Magnesium with Online Inductively Coupled Plasma Atomic Emission Spectroscopy, Chemphyschem Commun., 2015, 16, p 536–539. https://doi.org/10.1002/cphc.201402666 J. Liang, P.B. Srinivasan, C. Blawert, M. Störmer, and W. Dietzel, Electrochemical Corrosion Behaviour of Plasma Electrolytic Oxidation Coatings on AM50 Magnesium Alloy Formed in Silicate and Phosphate based Electrolytes, Electrochim. Acta, 2009, 54, p 3842–3850. https://doi.org/10.1016/j.electacta.2009.02.004 M. Rahmati, K. Raeissi, M.R. Toroghinejad, A. Hakimizad, and M. Santamaria, Corrosion and Wear Resistance of Coatings Produced on AZ31 Mg Alloy by Plasma Electrolytic Oxidation in Silicate-Based K2TiF6 Containing Solution: Effect of Waveform, J. Magnes. Alloy., 2021 https://doi.org/10.1016/j.jma.2021.07.026 Y.M. Wang, J.W. Guo, Z.K. Shao, J.P. Zhuang, M.S. Jin, C.J. Wu, D.Q. Wei, and Y. Zhou, A Metasilicate-Based Ceramic Coating Formed on Magnesium Alloy by Microarc Oxidation and its Corrosion in Simulated Body Fluid, Surf. Coatings Technol., 2013, 219, p 8–14. https://doi.org/10.1016/j.surfcoat.2012.12.040 M.N. Sarian, N. Iqbal, P. Sotoudehbagha, M. Razavi, Q.U. Ahmed, C. Sukotjo, and H. Hermawan, Potential Bioactive Coating System for High-Performance Absorbable Magnesium Bone Implants, Bioact. Mater., 2022, 12, p 42–63. https://doi.org/10.1016/j.bioactmat.2021.10.034 X. Li, Z. Weng, W. Yuan, X. Luo, H.M. Wong, X. Liu, S. Wu, K.W.K. Yeung, Y. Zheng, and P.K. Chu, Corrosion Resistance of Dicalcium Phosphate Dihydrate/Poly(Lactic-Co-Glycolic Acid) Hybrid Coating on AZ31 Magnesium Alloy, Corros. Sci., 2016, 102, p 209–221. https://doi.org/10.1016/j.corsci.2015.10.010 X. Ye, S. Cai, Y. Dou, G. Xu, K. Huang, M. Ren, and X. Wang, Bioactive Glass-Ceramic Coating for Enhancing the in Vitro Corrosion Resistance of Biodegradable Mg Alloy, Appl. Surf. Sci., 2012, 259, p 799–805. https://doi.org/10.1016/j.apsusc.2012.07.127 X. Lu, M. Mohedano, C. Blawert, E. Matykina, R. Arrabal, K.U. Kainer, and M.L. Zheludkevich, Plasma Electrolytic Oxidation Coatings with Particle Additions: A Review, Surf. Coatings Technol., 2016, 307, p 1165–1182. https://doi.org/10.1016/j.surfcoat.2016.08.055 L. Wen, Y.M. Wang, Y. Liu, Y. Zhou, L.X. Guo, J.H. Ouyang, and D.C. Jia, EIS Study of a Self-Repairing Microarc Oxidation Coating, Corros. Sci., 2011, 53, p 618–623. https://doi.org/10.1016/j.corsci.2010.10.010 Y. Mori, A. Koshi, J. Liao, H. Asoh, and S. Ono, Characteristics and Corrosion Resistance of Plasma Electrolytic Oxidation Coatings on AZ31B Mg Alloy Formed in Phosphate: Silicate Mixture Electrolytes, Corros. Sci., 2014, 88, p 254–262. https://doi.org/10.1016/j.corsci.2014.07.038