Effect of Briquetting Pressure on the Properties, Reduction Behavior, and Reduction Kinetics of Cold-Bonded Briquette Prepared From Return Fines of Sinter

Metallurgical and Materials Transactions B - Tập 54 - Trang 355-369 - 2022
Ying Li1, Yonggang Zang2,3, Yuandong Xiong1, Dejin Qiu1, Chuan Wang4, Lixiang Yan5, Yaowei Yu1
1State Key Laboratory of Advanced Special Steel, Shanghai Key Laboratory of Advanced Ferrometallurgy, School of Materials Science and Engineering, Shanghai University, Shanghai, P.R. China
2School of Materials and Metallurgy, Guizhou University, Guiyang, P.R. China
3Guizhou Province Key Laboratory of Metallurgical Engineering and Energy Process Saving, Guiyang, P.R. China
4Swerim AB, Luleå, Sweden
5Chongqing Zhenyan Energy Saving and Environmental Protection Technology Co., Ltd., Chongqing, P.R. China

Tóm tắt

Return fines of sinter were used to prepare cold-bonded briquette (CBB) with different briquetting pressure and properties, and reduction behavior and reduction kinetics of CBB were investigated in the current study. Increasing the briquetting pressure leads to the increase of the CBB’s compressive strength. The changing tendency of the CBB’s compressive strength after reduction disintegration index (RDI) experiment is similar with the CBB. With the increase of briquetting pressure, the particle size distribution of raw materials changes greatly, and the proportion of < 0.5 and 0.5–2 mm increased significantly. The porosity and reducibility index (RI) of the CBB decrease with the increase of briquetting pressure. The compressive strength of the CBB after the RI experiment and the reduction time both increase as the briquetting pressure is increased. After RI experiment, the main phases of 0 MPa CBB (briquetting pressure absent) are wüstite, metallic iron, calcium ferrite, and silicate, the main phases of periphery part of 20 to 240 MPa CBBs are wüstite, metallic iron, and silicate, and the main phases of core part of 20 to 240 MPa CBBs are wüstite, calcium ferrite, and silicate. Increasing the briquetting pressure from 0 to 240 MPa causes the reduction rate decrease. The effective diffusion coefficient of CO decreases when increasing the briquetting pressure.

Tài liệu tham khảo

Y. Wang, J. Zhang, Z. Liu, and C. Du: JOM, 2017, vol. 69, pp. 2404–11. K. He and L. Wang: Renew. Sustain. Energy Rev., 2017, vol. 70, pp. 1022–39. D. Fernández-González, I. Ruiz-Bustinza, J. Mochón, C. González-Gasca, and L.F. Verdeja: Miner. Process. Extr. Metall. Rev., 2017, vol. 38, pp. 215–27. S. Wu, J. Zhu, J. Fan, G. Zhang, and S. Chen: ISIJ Int., 2013, vol. 53, pp. 1561–70. Y. Li, H. Chen, A. Hammam, H. Wei, H. Nie, W. Ding, M. Omran, L. Yan, and Y. Yu: Materials, 2021, vol. 14, pp. 1–7. Y. Li, Y. Cao, H. Nie, S. Wei, L. Yan, and Y. Yu: China Metall., 2022, vol. 32, pp. 21–26. N.A. El-Hussiny and M.E.H. Shalabi: Powder Technol., 2011, vol. 205, pp. 217–23. L.R. Lemos, S.H.F.S. da Rocha, and L.F.A. de Castro: J. Mater. Res. Technol., 2015, vol. 4, pp. 278–82. M. Bembenek: Sustainability, 2020, vol. 12, pp. 1–0. Z. Guo, J. Wu, Y. Zhang, K. Cao, Y. Feng, J. Liu, and J. Li: Fuel, 2020, vol. 267, pp. 1–1. Z. Li and H. Zou: J. Inst. Eng. (India): Ser. C, 2022, vol. 103, pp. 459–72. A. Demirbaş: Energy Convers. Manag., 1999, vol. 40, pp. 437–45. A. Heikkilä, M. Iljana, H. Bartusch, and T. Fabritius: Steel Res. Int., 2020, vol. 91, pp. 1–8. H.P. Pimenta and V. Seshadri: Ironmak. Steelmak., 2002, vol. 29, pp. 169–74. S. Yang, M. Zhou, T. Jiang, and X. Xue: Int. J. Miner. Metall. Mater., 2018, vol. 25, pp. 145–52. D. Spreitzer and J. Schenk: Steel Res. Int., 2019, vol. 90, pp. 1–7. M. Matsumura, M. Hoshi, and T. Kawaguchi: ISIJ Int., 2005, vol. 45, pp. 594–602. J.O. Edstrom: J. Iron Steel Inst. Lond., 1953, vol. 175, p. 289. Y. Zhang: Pellet Theory and Technology, 1st ed. Metallurgical Industry Press, Beijing, 1997, pp. 326–28. I.V. Flores, O. Matos, A.L.D. Silva, and M.C. Bagatini: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1716–38. A.V. Bradshaw and A.G. Matyas: Metall. Mater. Trans. B, 1976, vol. 7B, pp. 81–87. M.I. Nasr, A.A. Omar, M.H. Khedr, and A.A. El-Geassy: ISIJ Int., 1995, vol. 35, pp. 1043–49. X. Huang: Principles of Iron and Steel Metallurgy, 3rd ed. Metallurgical Industry Press, Beijing, 2013, pp. 291–93. W. Li, G. Fu, M. Chu, and M. Zhu: Steel Res. Int., 2017, vol. 88, pp. 1–3. H. Sun, J. Wang, Y. Han, X. She, and Q. Xue: Int. J. Miner. Process., 2013, vol. 125, pp. 122–28. M. Gan, Z. Ji, X. Fan, W. Lv, R. Zheng, X. Chen, S. Liu, and T. Jiang: Powder Technol., 2018, vol. 333, pp. 385–93. T. Umadevi, A. Brahmacharyulu, A.K. Roy, P.C. Mahapatra, M. Prabhu, and M. Ranjan: ISIJ Int., 2011, vol. 51, pp. 922–29. J. Zhang, Y. Zhang, K. Li, Y. Wang, Z. Liu, and G. Wang: Metall. Mater. Trans. B, 2016, vol. 47B, pp. 3046–55. M. Zhou, S. Yang, T. Jiang, and X. Xue: JOM, 2015, vol. 67, pp. 1203–13. K. Bai, L. Liu, Y. Pan, H. Zuo, J. Wang, and Q. Xue: Ironmak. Steelmak., 2021, vol. 48, pp. 1048–63. Y. Tu, Z. Xu, and W. Wang: Powder Technol., 2015, vol. 281, pp. 121–28. Y. Ogasawara, T. Sato, J. Ishii, R. Murai, and S. Watakabe: ISIJ Int., 2020, vol. 60, pp. 1389–94. F.E. Santos, C.H. Borgert, L.R. Neto, J.R.D. Oliveira, H.J.F. Filho, J.O. Alves, J.P. Machado, F.F. Grillo, V.B. Telles, and E. Junca: Metall. Mater. Trans. B, 2021, vol. 52B, pp. 1664–80. W. Pietsch: Agglomeration Processes: Phenomena, Technologies, Equipment, 1st ed. John Wiley & Sons, Darmstadt, 2008, pp. 232–33. U. Srivastava, S.K. Kawatra, and T.C. Eisele: Metall. Mater. Trans. B, 2013, vol. 44B, pp. 1000–09. W. Li, N. Wang, G. Fu, M. Chu, and M. Zhu: Powder Technol., 2018, vol. 326, pp. 137–45. D. Guo, M. Hu, C. Pu, B. Xiao, Z. Hu, S. Liu, X. Wang, and X. Zhu: Int. J. Hydrog. Energy, 2015, vol. 40, pp. 4733–40. Y. Wang, Z. Liu, J. Zhang, C. Du, and L. Niu: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 607–16. J. Chen, R. Zhang, T. Simmonds, and P.C. Hayes: Metall. Mater. Trans. B, 2019, vol. 50B, pp. 2612–22.