Effect of Band Nonparabolicity on the Inter Band Tunneling in Semiconductors
Tóm tắt
A simple yet generalized theory is developed to study inter band tunneling property of narrow band gap III–V compound semiconductors. The band structures of these low band gap semiconductors with sufficiently separated split-off valance band are usually described by the three energy band model of Kane, so this has been adopted here for the analysis of interband tunneling property in the case of InAs, InSb, and In1-xGaxAsyP1-y lattice matched to InP as representative direct band gap semiconductors having varied split-off valence band compared to their bulk state band gap energy. It has been found that the magnitude of tunneling rate from heavy hole decreases with increasing band nonparabolicity and the impact is more significant at high electric field in the three-band model of Kane than those with simple parabolic energy band approximations reflecting the direct influence of energy band parameters on inter band tunneling transitions. With proper consideration of band nonparabolicity, the results of the analysis of tunneling rate of these narrow gap materials show significant deviations from the results when simple parabolic band approximation is considered. The exact physical basis of the sources of deviation in the nonparabolic case from the corresponding parabolic band approximations is discussed in association to band coupling effect, transverse energy dependence, and the interplay between them. Moreover, under certain limiting conditions, our results reduce to the well-known results of parabolic band approximation and thus providing an indirect test to the accuracy of our generalized formulations.
Tài liệu tham khảo
C. Zener, A theory of the electrical breakdown of solid dielectrics. Proc. R. Soc. London, Ser. A 145, 523 (1934). https://doi.org/10.1098/rspa.1934.0116
L. Esaki, New Phenomenon in Narrow Germanium p−n Junctions. Phys. Rev. 109, 603 (1958). https://doi.org/10.1103/PhysRev.109.603
W. Vandenberghe, B. Sorée, W. Magnus, G. Groeseneken, Zener tunneling in semiconductors under nonuniform electric fields. J. Appl. Phys. 107, 054520 (2010). https://doi.org/10.1063/1.3311550
W.M. Reddick, G.A.J. Amaratunga, Silicon surface tunnel transistor. Appl. Phys. Lett. 67, 494 (1995). https://doi.org/10.1063/1.114547
J. Appenzeller, Y.M. Lin, J. Knoch, Z. Chen, P. Avouris, Comparing carbon nanotube transistors - the ideal choice: a novel tunneling device design. IEEE Trans. Electron. Devices 52, 2568 (2005). https://doi.org/10.1109/TED.2005.859654
T. Lim, Y. Kim, Effect of band-to-band tunnelling leakage on 28 nm MOSFET design. Electron. Lett. 44, 157 (2008). https://doi.org/10.1049/el:20082596
A. Pan, C.O. Chui, Modeling direct interband tunneling. I. Bulk semiconductors. J. Appl. Phys. 116, 054508 (2014). https://doi.org/10.1063/1.4891527
H. Carrillo-Nunez, A. Ziegler, M. Luisier, A. Schenk, Modeling direct band-to-band tunneling: From bulk to quantum-confined semiconductor devices. J. Appl. Phys. 117, 234501 (2015). https://doi.org/10.1063/1.4922427
D. Jena, T. Fang, Q. Zhang, H. Xing, Zener tunneling in semiconducting nanotube and graphene nanoribbon p-n junctions. Appl. Phys. Lett. 93, 112106 (2008). https://doi.org/10.1063/1.2983744
C.H. Shih, N.D. Chien, Physical properties and analytical models of band-to-band tunneling in low-bandgap emiconductors. J. Appl. Phys. 115, 044501 (2014). https://doi.org/10.1063/1.4862335
W.Y. Fung, L. Chen, W. Lu, Esaki tunnel diodes based on vertical Si-Ge nanowire heterojunctions. Appl. Phys. Lett. 99, 092108 (2011). https://doi.org/10.1063/1.3633347
Q. Zhang, W. Zhao, A. Seabaugh, Low-subthreshold-swing tunnel transistors. IEEE Electron. Device Lett. 27, 297 (2006). https://doi.org/10.1109/LED.2006.871855
L. Keldysh, Influence of the Lattice Vibrations of a Crystal on the Production of Electron-Hole Pairs in a Strong Electrical Field. Sov. Phys. JETP 7, 665 (1959)
E.O. Kane, Zener tunneling in semiconductors. J. Phys. Chem. Solids 12, 181 (1960). https://doi.org/10.1016/0022-3697(60)90035-4
E.O. Kane, Theory of Tunneling. J. Appl. Phys. 32, 83 (1961). https://doi.org/10.1063/1.1735965
P.N. Argyres, Theory of Tunneling and its Dependence on a Longitudinal Magnetic Field. Phys. Rev. 126, 1386 (1962). https://doi.org/10.1103/PhysRev.126.1386
A. Schenk, Rigorous theory and simplified model of the band-to-band tunneling in silicon Author links open overlay panel. Solid State Electron 36, 19 (1993). https://doi.org/10.1016/0038-1101(93)90065-X
A.M. Ionescu, H. Riel, Tunnel field-effect transistors as energy-efficient electronic switches. Nature 479, 329 (2011). https://doi.org/10.1038/nature10679
E.O. Kane, Band structure of indium antimonide. J. Phys. Chem. Solids 1, 249 (1957). https://doi.org/10.1016/0022-3697(57)90013-6
A. Dey, B. Maiti, D. Chanda (Sarkar), A simple analysis of interband absorption in quantum well structure of III-V ternary and quaternary semiconductors. J. Appl. Phys. 111, 103104 (2012). https://doi.org/10.1063/1.4718414
A. Dey, B. Maiti, D. Chanda (Sarkar), Inter-band optoelectronic properties in quantum dot structure of low band gap III-V semiconductors. J. Appl. Phys. 115, 143107 (2014). https://doi.org/10.1063/1.4870939
W. Franz, W. Franz, International Conference on Semiconductors, Garmisch-Partenkirchen, (1956) (Interscience Publishers, Inc., New York, 1958), p. 317
J. Chu, A. Sher, Physics and properties of narrow gap semiconductors (Springer Science, New York, 2008). https://doi.org/10.1007/978-0-387-74801-6
R. Dornhaus, G. Nimtz, The properties and applications of the Hg1−xCdxTe alloy system. Springer Tracts Mod. Phys. 78, 1 (1978). https://doi.org/10.1007/BFb0119322
G.L. Hansen, J.L. Schmidt, T.N. Casselman, Calculation of intrinsic carrier concentration in Hg1−xCdxTe. J. Appl. Phys. 53, 7099 (1982). https://doi.org/10.1063/1.332153
R.J. Nicholas, S.J. Sessions, Cyclotron resonance and the magnetophonon effect in GaxIn1−xAsyP1−y. Appl. Phys. Lett. 37, 178 (1980). https://doi.org/10.1063/1.91815