Tác động của Al đến độ ổn định của các pha silicat magie hydrat dày đặc tới lớp đáy trên cùng của lớp vỏ trái đất: ý nghĩa đối với việc vận chuyển nước vào lớp vỏ sâu

Physics and Chemistry of Minerals - Tập 48 - Trang 1-10 - 2021
Chaowen Xu1,2,3,4, Toru Inoue1,5,6, Sho Kakizawa1,5,6, Masamichi Noda1,5,6, Jing Gao7
1Geodynamics Research Center, Ehime University, Matsuyama, Japan
2The United Laboratory of High-Pressure Physics and Earthquake Science, Beijing, China
3Institute of Earthquake Forecasting, China Earthquake Administration (CEA), Beijing, China
4China Earthquake Administration, Institute of Disaster Prevention, Sanhe, China
5Department of Earth and Planetary Systems Science, Hiroshima University, Higashi-Hiroshima, Japan
6Hiroshima Institute of Plate Convergence Region Research (HiPeR), Hiroshima University, Hiroshima, Japan
7State Key Laboratory of Lithospheric Evolution, Institutions of Earth Science, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China

Tóm tắt

Chúng tôi đã điều tra một cách có hệ thống độ ổn định ở áp suất cao và nhiệt độ cao của các pha silicat magie hydrat (DHMS) chứa Al trong các thành phần tự nhiên của clorit có khoảng 16 wt% H2O và khoảng 14 wt% Al2O3 ở áp suất từ 14 đến 25 GPa tại nhiệt độ 800–1600°C bằng thiết bị đa chóp kiểu MA8. Một hỗn hợp hóa học tương tự như clorit không chứa Fe cũng được nghiên cứu để so sánh. Theo đường đi áp suất-nhiệt độ (P–T) của sự lún lạnh, tập hợp pha của pha E + pha D ổn định ở 14–25 GPa. Pha siêu ẩm B được quan sát thấy giữa 16 và 22 GPa đồng tồn tại với pha E + pha D. Theo đường đi P–T của sự lún nóng, tập hợp pha của pha E + garnet được xác định tại 14–18 GPa đồng tồn tại với dung nham. Tập hợp pha của pha siêu ẩm B + pha D được tìm thấy ở 18–25 GPa, bụng dự kiến sẽ tồn tại ở các điều kiện P–T cao hơn. Chúng tôi đã xác nhận rằng sự hiện diện của Al có thể tăng cường độ ổn định của DHMS. Kết quả của chúng tôi chỉ ra rằng, sau sự phân hủy của clorit ở khu vực nông của vùng lún, vùng ổn định rộng lớn của các DHMS chứa Al có thể tăng khả năng vận chuyển nước vào lớp vỏ sâu dưới của trái đất.

Từ khóa

#Al #độ ổn định #silicat magie hydrat #lớp vỏ sâu #vận chuyển nước

Tài liệu tham khảo

Ballaran TB, Frost DJ, Miyajima N, Heidelbach F (2010) The structure of a super-aluminous version of the dense hydrous-magnesium silicate phase D. Am Miner 95:1113–1116 Bolfan-Casanova N, Keppler H, Rubie D (2000) Partitioning of water between mantle phases in the system MgO–SiO2–H2O up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet Sci Lett 182:209–221 Bolfan-Casanova N, Keppler H, Rubie D (2003) Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys Res Lett 30:169–172 Cai N, Inoue T (2019) High-pressure and high-temperature stability of chlorite and 23 Å phase in the natural chlorite and synthetic MASH system. CR Geosci 351:104–112 Cannat M, Mevel C, Maia M, Deplus C, Durand C, Genre P, Agriniet P, Belarouchi A, Dubuisson G, Humlet E, Reynolds J (1995) Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology 23:49–52 Chen L, Ai Y (2009) Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J Geophys Res 114:B06307. https://doi.org/10.1029/2008JB006221 Edgar A, Pizzolato L (1995) An experimental study of partitioning of fluorine between K-richterite, apatite, phlogopite, and melt at 20 kbar. Contrib Mineral Petrol 121:47–257 Fei H, Yamazaki D, Sakurai M, Miyajima N, Ohfuji H, Katsura T, Yamamoto T (2017) A nearly water-saturated mantle transition zone inferred from mineral viscosity. Sci Adv 3:1–8 Frost D (1999) The stability of dense hydrous magnesium silicates in Earth’s transition zone and lower mantle. In: Fei Y, Bertka C, Mysen B (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to boyd F, vol 6. The Geochem Soc Special Publication, pp 283–296 Frost D, Fei Y (1998) Stability of phase D at high pressure and high temperature. J Geophys Res 103:7463–7474 Fu S, Yang J, Karato S, Vasiliev A, Presniakov M, Gavrilliuk A, Ivanova A, Hauri E, Okuchi T, Purevjav N, Lin J (2019) Water concentration in single-crystal (Al, Fe)–bearing bridgmanite grown from the hydrous melt: implications for dehydration melting at the topmost lower mantle. Geophys Res Lett. https://doi.org/10.1029/2019GL084630 Gasparik T (1993) The role of volatile in the transition zone. J Geophys Res 98:4287–4299 Ghosh S, Schmidt M (2014) Melting of phase D in the lower mantle and implications for recycling and storage of H2O in the deep mantle. Geochim Cosmochim Acta 145:72–88 Hazen R, Yang H, Prewitt C, Gasparik T (1997) Crystal chemistry of superfluorous phase B (Mg10Si3O14F4): implications for the role of fluorine in the mantle. Am Mineral 82:647–650 Inoue T (1994) Effect of water on melting phase relations and melt composition in the system Mg2SiO4–MgSiO3–H2O up to 15 GPa. Phys Earth Planet Inter 85:237–263 Inoue T, Yurimoto H, Kudoh Y (1995) Hydrous modified spinel, Mg1.75SiH0.5O4, a new water reservoir in the mantle transition zone. J Geophys Res 22:117–120 Inoue T, Ueda T, Higo Y, Yamada A, Irifune T, Funakoshi K (2006) High pressure and high temperature stability and the equation of state of superhydrous phase B. In: Jacobsen SD, van der Lee S (eds) Earth’s deep water cycle. Geophysical monograph series, vol 168. AGU, pp 147–157 Inoue T, Sawamoto H (1992) High pressure melting of pyrolite under hydrous condition and its geophysical implications. In: Syono Y, Manghnani MH (eds) High-pressure research: application to earth and planetary sciences. Geophysical monograph, vol 67. TERRAPUB, Tokyo/AGU, Washington, D.C., pp 323–331 Irifune T, Kubo N, Isshiki M, Yamasaki Y (1998) Phase transformations in serpentine and transportation of water into the lower mantle. Geophys Res Lett 25:203–206 Kakizawa S, Inoue T, Nakano H, Kuroda M, Sakamoto N, Yurimoto H (2018) Stability of al-bearing superhydrous phase B at the mantle transition zone and the uppermost lower mantle. Am Miner 103:1221–1227 Kanzaki M (1991) Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter 66:307–312 Katsura T, Yoneda A, Yamazaki D, Yoshino T, Ito E (2010) Adiabatic temperature profile in the mantle. Phys Earth Planet Int 183:212–218 Kawamoto T, Hervig RL, Holloway JR (1996) Experimental evidence for a hydrous transition zone in the early Earth’s mantle. Earth Planet Sci Lett 142:587–592 Kirby S, Stein S, Okal E, Rubie D (1996) Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev Geophys 34:261–306 Komabayashi T, Omori S (2006) Internally consistent thermodynamic dataset for dense hydrous magnesium silicates up to 35 GPa, 1600 °C: implications for water circulation in the Earth’s deep mantle. Phys Earth Planet Int 156:89–107 Komabayashi T, Hirose K, Funakoshi KI, Takafuji N (2005) Stability of phase A in antigorite (serpentine) composition determined by in situ x-ray pressure observations. Phys Earth Planet Int 151:276–289 Litasov K, Ohtani E (2002) Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa. Phys Earth Planet Inter 134:105–127 Litasov K, Ohtani E (2003) Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa. Phys Chem Miner 30:147–156 Litasov K, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150:239–263 Litasov K, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005) Wet subduction versus cold subduction. J Geophys Res 32:370–370 Liu Z, Park J, Karato S (2016) Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophys Res Lett 43:2480–2487 Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, Higo Y (2014) Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci 7:224–227 Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N, Ohishi Y, Nishijima M (2014) Stability of a hydrous δ-phase, AlOOH-MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett 401:12–17 Ohtani E, Mizobata H, Yurimoto H (2000) Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3-H2O at pressures up to 27 GPa. Phys Chem Miner 27:533–544 Ohtani E, Toma M, Litasov K (2001) Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Phys Earth Planet Inter 124:105–117 Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143:255–269 Ohtani E, Amaike Y, Kamada S, Sakamaki T, Hirao N (2014) Stability of hydrous phase H MgSiO4H2 under lower mantle conditions. Geophys Res Lett. https://doi.org/10.1002/2014GL061690 Omori S, Komabayashi T, Maruyama S (2004) Dehydration and earthquakes in the subducting slab: empirical link in intermediate and deep seismic zones. Phys Earth Planet Inter 146:297–311 Pamato MG, Myhill R, Ballaran TB, Frost DJ, Heidelbach F, Miyajima N (2015) Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nat Geosci 8:75–79 Panero W, Caracas R (2017) Stability of phase H in the MgSiO4H2–AlOOH–SiO2 system. Earth Planet Sci Lett 463:171–177 Pearson DG, Brenker FE, Nestola F, Mcneill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2015) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224 Porritt R, Yoshioka S (2016) Slab pileup in the mantle transition zone and the 30 May 2015 Chichi-jima earthquake. Geophys Res Lett 43:4905–4912 Schmandt B, Jacobsen S, Becker T, Liu Z, Dueker K (2014) Earth’s interior. Dehydration melting at the top of the lower mantle. Science 344:1265–1268 Schmidt MW, Ulmer P (2004) A rocking multianvil: elimination of chemical segregation in fluid-saturated high-pressure experiments. Geochim Cosmochim Acta 68:1889–1899 Thompson A (1992) Water in the Earth’s upper mantle. Nature 358:295–302 Tschauner O, Ma C, Beckett J, Prescher C, Prakapenka V, Rossman G (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346:1100–1102 Walter MJ, Thomson AR, Wang W, Lord OT, Ross J, McMahon SC, Baron MA, Melekhova E, Kleppe AK, Kohn SC (2015) The stability of hydrous silicates in Earth’s lower mantle: experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chem Geol 418:16–29 Wirth R, Vollmer C, Brenker F, Matsyuk S, Kaminsky F (2007) Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth Planet Sci Lett 259:384–399 Xu C, Inoue T (2019) Melting of Al-rich phase D up to the uppermost lower mantle and transportation of H2O to the deep Earth. Geochem Geophy Geosy 20:4382–4389 Xu C, Nishi M, Inoue T (2019) Solubility behavior of δ-AlOOH and ɛ-FeOOH at high pressures. Am Mineral 104:1416–1420 Xu C, Gréaux S, Inoue T, Noda M, Sun W, Kuwahara H, Higo Y (2020) Sound velocities of Al-bearing phase D up to 22 GPa and 1300 K. Geophys Res Lett. https://doi.org/10.1029/2020GL088877 Yang D, Wang W, Wu Z (2017) Elasticity of superhydrous phase B at the mantle temperatures and pressures: implications for 800km discontinuity and water flow into the lower mantle. J Geophys Res 122:5026–5037