Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tác động của Al đến độ ổn định của các pha silicat magie hydrat dày đặc tới lớp đáy trên cùng của lớp vỏ trái đất: ý nghĩa đối với việc vận chuyển nước vào lớp vỏ sâu
Tóm tắt
Chúng tôi đã điều tra một cách có hệ thống độ ổn định ở áp suất cao và nhiệt độ cao của các pha silicat magie hydrat (DHMS) chứa Al trong các thành phần tự nhiên của clorit có khoảng 16 wt% H2O và khoảng 14 wt% Al2O3 ở áp suất từ 14 đến 25 GPa tại nhiệt độ 800–1600°C bằng thiết bị đa chóp kiểu MA8. Một hỗn hợp hóa học tương tự như clorit không chứa Fe cũng được nghiên cứu để so sánh. Theo đường đi áp suất-nhiệt độ (P–T) của sự lún lạnh, tập hợp pha của pha E + pha D ổn định ở 14–25 GPa. Pha siêu ẩm B được quan sát thấy giữa 16 và 22 GPa đồng tồn tại với pha E + pha D. Theo đường đi P–T của sự lún nóng, tập hợp pha của pha E + garnet được xác định tại 14–18 GPa đồng tồn tại với dung nham. Tập hợp pha của pha siêu ẩm B + pha D được tìm thấy ở 18–25 GPa, bụng dự kiến sẽ tồn tại ở các điều kiện P–T cao hơn. Chúng tôi đã xác nhận rằng sự hiện diện của Al có thể tăng cường độ ổn định của DHMS. Kết quả của chúng tôi chỉ ra rằng, sau sự phân hủy của clorit ở khu vực nông của vùng lún, vùng ổn định rộng lớn của các DHMS chứa Al có thể tăng khả năng vận chuyển nước vào lớp vỏ sâu dưới của trái đất.
Từ khóa
#Al #độ ổn định #silicat magie hydrat #lớp vỏ sâu #vận chuyển nướcTài liệu tham khảo
Ballaran TB, Frost DJ, Miyajima N, Heidelbach F (2010) The structure of a super-aluminous version of the dense hydrous-magnesium silicate phase D. Am Miner 95:1113–1116
Bolfan-Casanova N, Keppler H, Rubie D (2000) Partitioning of water between mantle phases in the system MgO–SiO2–H2O up to 24 GPa: implications for the distribution of water in the Earth’s mantle. Earth Planet Sci Lett 182:209–221
Bolfan-Casanova N, Keppler H, Rubie D (2003) Water partitioning at 660 km depth and evidence for very low water solubility in magnesium silicate perovskite. Geophys Res Lett 30:169–172
Cai N, Inoue T (2019) High-pressure and high-temperature stability of chlorite and 23 Å phase in the natural chlorite and synthetic MASH system. CR Geosci 351:104–112
Cannat M, Mevel C, Maia M, Deplus C, Durand C, Genre P, Agriniet P, Belarouchi A, Dubuisson G, Humlet E, Reynolds J (1995) Thin crust, ultramafic exposures, and rugged faulting patterns at the Mid-Atlantic Ridge (22°–24°N). Geology 23:49–52
Chen L, Ai Y (2009) Discontinuity structure of the mantle transition zone beneath the North China Craton from receiver function migration. J Geophys Res 114:B06307. https://doi.org/10.1029/2008JB006221
Edgar A, Pizzolato L (1995) An experimental study of partitioning of fluorine between K-richterite, apatite, phlogopite, and melt at 20 kbar. Contrib Mineral Petrol 121:47–257
Fei H, Yamazaki D, Sakurai M, Miyajima N, Ohfuji H, Katsura T, Yamamoto T (2017) A nearly water-saturated mantle transition zone inferred from mineral viscosity. Sci Adv 3:1–8
Frost D (1999) The stability of dense hydrous magnesium silicates in Earth’s transition zone and lower mantle. In: Fei Y, Bertka C, Mysen B (eds) Mantle petrology: field observations and high pressure experimentation: a tribute to boyd F, vol 6. The Geochem Soc Special Publication, pp 283–296
Frost D, Fei Y (1998) Stability of phase D at high pressure and high temperature. J Geophys Res 103:7463–7474
Fu S, Yang J, Karato S, Vasiliev A, Presniakov M, Gavrilliuk A, Ivanova A, Hauri E, Okuchi T, Purevjav N, Lin J (2019) Water concentration in single-crystal (Al, Fe)–bearing bridgmanite grown from the hydrous melt: implications for dehydration melting at the topmost lower mantle. Geophys Res Lett. https://doi.org/10.1029/2019GL084630
Gasparik T (1993) The role of volatile in the transition zone. J Geophys Res 98:4287–4299
Ghosh S, Schmidt M (2014) Melting of phase D in the lower mantle and implications for recycling and storage of H2O in the deep mantle. Geochim Cosmochim Acta 145:72–88
Hazen R, Yang H, Prewitt C, Gasparik T (1997) Crystal chemistry of superfluorous phase B (Mg10Si3O14F4): implications for the role of fluorine in the mantle. Am Mineral 82:647–650
Inoue T (1994) Effect of water on melting phase relations and melt composition in the system Mg2SiO4–MgSiO3–H2O up to 15 GPa. Phys Earth Planet Inter 85:237–263
Inoue T, Yurimoto H, Kudoh Y (1995) Hydrous modified spinel, Mg1.75SiH0.5O4, a new water reservoir in the mantle transition zone. J Geophys Res 22:117–120
Inoue T, Ueda T, Higo Y, Yamada A, Irifune T, Funakoshi K (2006) High pressure and high temperature stability and the equation of state of superhydrous phase B. In: Jacobsen SD, van der Lee S (eds) Earth’s deep water cycle. Geophysical monograph series, vol 168. AGU, pp 147–157
Inoue T, Sawamoto H (1992) High pressure melting of pyrolite under hydrous condition and its geophysical implications. In: Syono Y, Manghnani MH (eds) High-pressure research: application to earth and planetary sciences. Geophysical monograph, vol 67. TERRAPUB, Tokyo/AGU, Washington, D.C., pp 323–331
Irifune T, Kubo N, Isshiki M, Yamasaki Y (1998) Phase transformations in serpentine and transportation of water into the lower mantle. Geophys Res Lett 25:203–206
Kakizawa S, Inoue T, Nakano H, Kuroda M, Sakamoto N, Yurimoto H (2018) Stability of al-bearing superhydrous phase B at the mantle transition zone and the uppermost lower mantle. Am Miner 103:1221–1227
Kanzaki M (1991) Stability of hydrous magnesium silicates in the mantle transition zone. Phys Earth Planet Inter 66:307–312
Katsura T, Yoneda A, Yamazaki D, Yoshino T, Ito E (2010) Adiabatic temperature profile in the mantle. Phys Earth Planet Int 183:212–218
Kawamoto T, Hervig RL, Holloway JR (1996) Experimental evidence for a hydrous transition zone in the early Earth’s mantle. Earth Planet Sci Lett 142:587–592
Kirby S, Stein S, Okal E, Rubie D (1996) Metastable mantle phase transformations and deep earthquakes in subducting oceanic lithosphere. Rev Geophys 34:261–306
Komabayashi T, Omori S (2006) Internally consistent thermodynamic dataset for dense hydrous magnesium silicates up to 35 GPa, 1600 °C: implications for water circulation in the Earth’s deep mantle. Phys Earth Planet Int 156:89–107
Komabayashi T, Hirose K, Funakoshi KI, Takafuji N (2005) Stability of phase A in antigorite (serpentine) composition determined by in situ x-ray pressure observations. Phys Earth Planet Int 151:276–289
Litasov K, Ohtani E (2002) Phase relations and melt compositions in CMAS–pyrolite–H2O system up to 25 GPa. Phys Earth Planet Inter 134:105–127
Litasov K, Ohtani E (2003) Stability of various hydrous phases in CMAS pyrolite-H2O system up to 25 GPa. Phys Chem Miner 30:147–156
Litasov K, Ohtani E (2005) Phase relations in hydrous MORB at 18–28 GPa: implications for heterogeneity of the lower mantle. Phys Earth Planet Inter 150:239–263
Litasov K, Ohtani E, Sano A, Suzuki A, Funakoshi K (2005) Wet subduction versus cold subduction. J Geophys Res 32:370–370
Liu Z, Park J, Karato S (2016) Seismological detection of low-velocity anomalies surrounding the mantle transition zone in Japan subduction zone. Geophys Res Lett 43:2480–2487
Nishi M, Irifune T, Tsuchiya J, Tange Y, Nishihara Y, Fujino K, Higo Y (2014) Stability of hydrous silicate at high pressures and water transport to the deep lower mantle. Nat Geosci 7:224–227
Ohira I, Ohtani E, Sakai T, Miyahara M, Hirao N, Ohishi Y, Nishijima M (2014) Stability of a hydrous δ-phase, AlOOH-MgSiO2(OH)2, and a mechanism for water transport into the base of lower mantle. Earth Planet Sci Lett 401:12–17
Ohtani E, Mizobata H, Yurimoto H (2000) Stability of dense hydrous magnesium silicate phases in the systems Mg2SiO4-H2O and MgSiO3-H2O at pressures up to 27 GPa. Phys Chem Miner 27:533–544
Ohtani E, Toma M, Litasov K (2001) Stability of dense hydrous magnesium silicate phases and water storage capacity in the transition zone and lower mantle. Phys Earth Planet Inter 124:105–117
Ohtani E, Litasov K, Hosoya T, Kubo T, Kondo T (2004) Water transport into the deep mantle and formation of a hydrous transition zone. Phys Earth Planet Inter 143:255–269
Ohtani E, Amaike Y, Kamada S, Sakamaki T, Hirao N (2014) Stability of hydrous phase H MgSiO4H2 under lower mantle conditions. Geophys Res Lett. https://doi.org/10.1002/2014GL061690
Omori S, Komabayashi T, Maruyama S (2004) Dehydration and earthquakes in the subducting slab: empirical link in intermediate and deep seismic zones. Phys Earth Planet Inter 146:297–311
Pamato MG, Myhill R, Ballaran TB, Frost DJ, Heidelbach F, Miyajima N (2015) Lower-mantle water reservoir implied by the extreme stability of a hydrous aluminosilicate. Nat Geosci 8:75–79
Panero W, Caracas R (2017) Stability of phase H in the MgSiO4H2–AlOOH–SiO2 system. Earth Planet Sci Lett 463:171–177
Pearson DG, Brenker FE, Nestola F, Mcneill J, Nasdala L, Hutchison MT, Matveev S, Mather K, Silversmit G, Schmitz S, Vekemans B, Vincze L (2015) Hydrous mantle transition zone indicated by ringwoodite included within diamond. Nature 507:221–224
Porritt R, Yoshioka S (2016) Slab pileup in the mantle transition zone and the 30 May 2015 Chichi-jima earthquake. Geophys Res Lett 43:4905–4912
Schmandt B, Jacobsen S, Becker T, Liu Z, Dueker K (2014) Earth’s interior. Dehydration melting at the top of the lower mantle. Science 344:1265–1268
Schmidt MW, Ulmer P (2004) A rocking multianvil: elimination of chemical segregation in fluid-saturated high-pressure experiments. Geochim Cosmochim Acta 68:1889–1899
Thompson A (1992) Water in the Earth’s upper mantle. Nature 358:295–302
Tschauner O, Ma C, Beckett J, Prescher C, Prakapenka V, Rossman G (2014) Discovery of bridgmanite, the most abundant mineral in Earth, in a shocked meteorite. Science 346:1100–1102
Walter MJ, Thomson AR, Wang W, Lord OT, Ross J, McMahon SC, Baron MA, Melekhova E, Kleppe AK, Kohn SC (2015) The stability of hydrous silicates in Earth’s lower mantle: experimental constraints from the systems MgO–SiO2–H2O and MgO–Al2O3–SiO2–H2O. Chem Geol 418:16–29
Wirth R, Vollmer C, Brenker F, Matsyuk S, Kaminsky F (2007) Inclusions of nanocrystalline hydrous aluminium silicate “Phase Egg” in superdeep diamonds from Juina (Mato Grosso State, Brazil). Earth Planet Sci Lett 259:384–399
Xu C, Inoue T (2019) Melting of Al-rich phase D up to the uppermost lower mantle and transportation of H2O to the deep Earth. Geochem Geophy Geosy 20:4382–4389
Xu C, Nishi M, Inoue T (2019) Solubility behavior of δ-AlOOH and ɛ-FeOOH at high pressures. Am Mineral 104:1416–1420
Xu C, Gréaux S, Inoue T, Noda M, Sun W, Kuwahara H, Higo Y (2020) Sound velocities of Al-bearing phase D up to 22 GPa and 1300 K. Geophys Res Lett. https://doi.org/10.1029/2020GL088877
Yang D, Wang W, Wu Z (2017) Elasticity of superhydrous phase B at the mantle temperatures and pressures: implications for 800km discontinuity and water flow into the lower mantle. J Geophys Res 122:5026–5037