Effect of ASTER DEM on the prediction of mean gravity anomalies: a case study over the Auvergne test region
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ågren J, Sjöberg EL, Kiamehr R (2009) The new gravimetric quasigeoid model KTH08 over Sweden. J Appl Geodesy 3:143–153
ASTER (2014) The Advanced Spaceborne Thermal Emission and Reflection Radiometer. http://gdem.ersdac.jspacesystems.or.jp
Bildirici OI, Ustun A, Selvi ZH, Abbak RA, Bugdayci I (2009) Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. CaGIS 36(1):95–104
Bjerhammar A (1973) Theory of errors and generalized matrix inverses. Elsevier, Amsterdam
Duquenne H (2007) A data set to test geoid computation methods. Harita Dergisi 18:61–65 Special Issue
Ellmann A (2004) The geoid for the Baltic countries determined by the least squares modification of Stokes’ formula. PhD thesis, Royal Institute of Technology, Division of Geodesy, Stockholm
Ellmann A, Sjöberg LE (2004) Ellipsoidal correction for the modified Stokes’ formula. Boll Geod Sci Aff 63:3
Kiamehr R (2006) Precise gravimetric geoid model for Iran based on GRACE and SRTM data and the least squares modification of the Stokes’ formula with some geodynamic interpretations. PhD thesis, Royal Institute of Technology, Department of Transport and Economics, Stockholm
Kiamehr R, Sjöberg E (2005) Effect of the SRTM DEM on the determination of high-resolution geoid model: a case study in Iran. J Geodesy 79:540–551
Kotsakis C, Sideris MG (1999) On the adjustment of combined GPS/levelling/geoid networks. J Geodesy 73(8):412–421
Merry CL (2003) DEM-induced errors in developing a quasi-geoid model for Africa. J Geodesy 77:537–542
Sjöberg LE (1984) Least squares modification of Stokes and Vening-Meinesz formulas by accounting for errors of truncation, potential coefficients and gravity data. Technical report. Department of Geodesy, Institute of Geophysics, University of Uppsala
Sjöberg LE (1991) Refined least squares modification of Stokes’ formula. Manuscripta Geod 16:367–375
Sjöberg LE (1999) The IAG approach to the atmospheric geoid correction in Stokes’ formula and a new strategy. J Geodesy 73:362–366
Sjöberg LE (2003a) A general model of modifying Stokes’ formula and its least squares solution. J Geodesy 77:790–804
Sjöberg LE (2003b) A solution to the downward continuation effect on the geoid determination by Stokes’ Formula. J Geodesy 77:94–100
Sjöberg LE (2007) The topographic bias by analytical continuation in physical geodesy. J Geodesy 87:345–350
SRTM (2014) Shuttle Radar Topography Mission. http://www2.jpl.nasa.gov/srtm
Tapley BD, Flechtner F, Bettadpur SV, Watkins MM (2013) The status and future prospect for GRACE after the first decade. In: Eos Trans., Fall Meet. Suppl. Abstract G22A–01, pp 330–331