Effect of ASTER DEM on the prediction of mean gravity anomalies: a case study over the Auvergne test region

Ramazan Alpay Abbak1
1Department of Geomatics Engineering, Selcuk University, Konya, Turkey

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ågren J, Sjöberg EL, Kiamehr R (2009) The new gravimetric quasigeoid model KTH08 over Sweden. J Appl Geodesy 3:143–153

ASTER (2014) The Advanced Spaceborne Thermal Emission and Reflection Radiometer. http://gdem.ersdac.jspacesystems.or.jp

Bildirici OI, Ustun A, Selvi ZH, Abbak RA, Bugdayci I (2009) Assessment of shuttle radar topography mission elevation data based on topographic maps in Turkey. CaGIS 36(1):95–104

Bjerhammar A (1973) Theory of errors and generalized matrix inverses. Elsevier, Amsterdam

Duquenne H (2007) A data set to test geoid computation methods. Harita Dergisi 18:61–65 Special Issue

Ellmann A (2004) The geoid for the Baltic countries determined by the least squares modification of Stokes’ formula. PhD thesis, Royal Institute of Technology, Division of Geodesy, Stockholm

Ellmann A, Sjöberg LE (2004) Ellipsoidal correction for the modified Stokes’ formula. Boll Geod Sci Aff 63:3

Kiamehr R (2006) Precise gravimetric geoid model for Iran based on GRACE and SRTM data and the least squares modification of the Stokes’ formula with some geodynamic interpretations. PhD thesis, Royal Institute of Technology, Department of Transport and Economics, Stockholm

Kiamehr R, Sjöberg E (2005) Effect of the SRTM DEM on the determination of high-resolution geoid model: a case study in Iran. J Geodesy 79:540–551

Kotsakis C, Sideris MG (1999) On the adjustment of combined GPS/levelling/geoid networks. J Geodesy 73(8):412–421

Merry CL (2003) DEM-induced errors in developing a quasi-geoid model for Africa. J Geodesy 77:537–542

Sjöberg LE (1984) Least squares modification of Stokes and Vening-Meinesz formulas by accounting for errors of truncation, potential coefficients and gravity data. Technical report. Department of Geodesy, Institute of Geophysics, University of Uppsala

Sjöberg LE (1991) Refined least squares modification of Stokes’ formula. Manuscripta Geod 16:367–375

Sjöberg LE (1999) The IAG approach to the atmospheric geoid correction in Stokes’ formula and a new strategy. J Geodesy 73:362–366

Sjöberg LE (2003a) A general model of modifying Stokes’ formula and its least squares solution. J Geodesy 77:790–804

Sjöberg LE (2003b) A solution to the downward continuation effect on the geoid determination by Stokes’ Formula. J Geodesy 77:94–100

Sjöberg LE (2007) The topographic bias by analytical continuation in physical geodesy. J Geodesy 87:345–350

SRTM (2014) Shuttle Radar Topography Mission. http://www2.jpl.nasa.gov/srtm

Tapley BD, Flechtner F, Bettadpur SV, Watkins MM (2013) The status and future prospect for GRACE after the first decade. In: Eos Trans., Fall Meet. Suppl. Abstract G22A–01, pp 330–331

Yildiz H, Forsberg R, Ågren J, Tscherning CC, Sjöberg LE (2012) Comparison of remove–compute–restore and least squares modification of Stokes’ formula techniques to quasi-geoid determination over the Auvergne test area. J Geod Sci 2(1):53–64