Effect of 60 Hz magnetic fields on the activation of hsp70 promoter in cultured INER-37 and RMA E7 cells
Tóm tắt
It has been reported that 50–60 Hz magnetic fields (MF) with flux densities ranging from microtesla to millitesla are able to induce heat shock factor or heat shock proteins in various cells. In this study, we investigated the effect of 60 Hz sinusoidal MF at 8 and 80 μT on the expression of the luciferase gene contained in a plasmid labeled as electromagnetic field-plasmid (pEMF). This gene construct contains the specific sequences previously described for the induction of hsp70 expression by MF, as well as the reporter for the luciferase gene. The pEMF vector was transfected into INER-37 and RMA E7 cell lines that were later exposed to either MF or thermal shock (TS). Cells that received the MF or TS treatments and their controls were processed according to the luciferase assay system for evaluate luciferase activity. An increased luciferase gene expression was observed in INER-37 cells exposed to MF and TS compared with controls (p < 0.05), but MF exposure had no effect on the RMA E7 cell line.
Tài liệu tham khảo
Bassett C. A. L. Fundamental and practical aspects of therapeutic uses of pulsed electromagnetic fields (PEMFs). Clin. Rev. Biomed. Eng. 17: 451–529; 1989. Review.
Benfante R.; Antonini R. A.; Kuster N.; Schuderer J.; Maercker C.; Adlkofer F.; Clementi F.; Fornasari D. The expression of PHOX2A,PHOX2B and of their target gene dopamine-beta-hydroxylase (DbetaH) is not modified by exposure to extremely-low-frequency electromagnetic field (ELF-EMF) in a human neuronal model. Toxicol. In Vitro 22(6): 1489–1495; 2008.
Bernardini C.; Zannoni A.; Turba M. E.; Bacci M. L.; Forni M.; Mesirca P.; Remondini D.; Castellani G.; Bersani F. Effects of 50 Hz sinusoidal magnetic fields on hsp27, hsp70, hsp90 expression in porcine aortic endothelial cells (PAEC). Bioelectromagnetics 28 (3): 231–237; 2007.
Blanchard J. P.; Blackman C. F. Clarification and application of an ion parametric resonance model for magnetic field interactions with biological systems. Bioelectromagnetics 15: 217–238; 1994.
Blank M. Electric and magnetic field signal transduction in the membrane Na,K-ATPase. Adv. Chem. 250:339–348; 1995a.
Blank M. Electric stimulation of protein synthesis in muscle. Adv. Chem. 250: 143–153; 1995b.
Blank M.; Goodman R. Do electromagnetic fields interact directly with DNA? Bioelectromagnetics 18: 111–115; 1997.
Blank M.; Goodman R. Electromagnetic fields may act directly on DNA. J. Cell. Biochem. 75 (3): 369–374; 1999.
Blank M.; Goodman R. A mechanism for stimulation of biosynthesis by electromagnetic fields: charge transfer in DNA and base pair separation. J. Cell. Physiol. 214 (1): 20–26; 2008.
Blank M.; Goodman R. Electromagnetic fields stress living cells. Pathophysiol. 16: 71–78; 2009.
Blank M.; Soo L.; Lin H.; Henderson A. S.; Goodman R. Changes in transcription in HL-60 cells following exposure to alternating currents from electric fields. Bioelectrochem. Bioenrg. 28: 301–309; 1992.
Bradford M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 248–254; 1976
Coulton L. A.; Harris P. A.; Baker A. T.; Pockley A. G. Effect of 60 Hz electromagnetic fields on the induction of heath-shock protein gene expression in human leukocytes. Radiat. Res. 161: 430–434; 2004.
Czyz J.; Guan K.; Zeng Q.; Nikolova T.; Meister A.; Schonborn F.; Schuderer J.; Kuste N.; Wobus A. M. High frequency electromagnetic fields (GSM signals) affect gene expression levels in tumor suppressor p53-deficient embryonic stem cells. Bioelectromagnetics 4: 296–307; 2004.
George I.; Geddis M. S.; Lill Z.; Lin H.; Gomez T.; Blank M.; Oz M. C.; Goodman R. Myocardial function improved by electromagnetic field induction of stress protein hsp70. J. Cell. Physiol. 216(3): 816–823; 2008.
Girgert R.; Emons G.; Hanf V.; Gründker C. Exposure of mcf-7 breast cancer cells to electromagnetic fields up-regulates the plasminogen activator system. Int. J. Gynecol. Cancer. 19(3): 334–338; 2009.
Goodman R.; Abbott J.; Krim A.; Henderson A. S. Nucleic-acid and protein synthesis in cultured Chinese hamster ovary (CHO) cells exposed to the pulse electromagnetic-fields. J. Bioelectr. 4: 565–575; 1985.
Goodman R.; Bassett C. A. L.; Henderson A. S. Pulsing electromagnetic fields induce cellular transcription. Science 220: 1283–1285; 1983.
Goodman R.; Blank M. Magnetic field stress induces expression of hsp70. Cell Stress Chaperones 3: 79–88; 1998.
Goodman R.; Blank M.; Lin H.; Dai R.; Khorkova D.; Soo L.; Weisbrot D.; Henderson A. S. Increased levels of hsp 70 transcripts induced when cells are exposed to low frequency electromagnetic fields. Bioelectrochem. Bioenerg. 33: 115–120; 1994.
Goodman R.; Henderson A. S. Transcription and translation in cells exposed to extremely low frequency electromagnetic fields. Bioelectrochem. Bioenerg. 25: 335–355; 1991.
Goodman R.; Lin-Ye A.; Geddis M. S.; Wickramaratne P. J.; Hodge S. E.; Pantazatos S.; Blank M.; Ambron R. T. Extremely low frequency electromagnetic fields activate the ERK cascade, increase hsp 70 protein levels and promote regeneration in Planaria. Int. J. Radiat. Biol. 9: 1–9; 2009.
Gottwald E.; Sontag W.; Lahni B.; Weibezahn K. F. Expression of HSP72 after ELF-EMF exposure in three cell lines. Bioelectromagnetics 28(7): 509–518; 2007.
Lagroye I.; Poncy L. Influence of 50 Hz magnetic fields and ionizing radiation on c-JUN and c-FOS oncoproteins. Bioelectromagnetics 19:112–119; 1998.
Lednev V. V. Possible mechanism for the influence of weak magnetic fieldson biological systems. Bioelectromagnetics (12): 71–75; 1991.
Lin H.; Blank M.; Goodman R. A magnetic field-responsive domain in the human HSP70 promoter. J. Cell. Biochem. 75(1): 170–176; 1999.
Lin H.; Blank M.; Head M.; Goodman R. Magnetic field activation of protein DNA binding. J. Cell. Biochem. 70: 297–303; 1998.
Lin H.; Blank M.; Rossol-Haseroth K.; Goodman R. Regulating genes with electromagnetic response elements. J. Cell. Biochem. 81 (1): 143–148; 2001.
Luben R. A. (1995) Membrane signal-transduction mechanisms and biological effects of low-energy electromagnetic fields. Adv Chem 250: 437-50.
Martin C. S.; Wight P. A.; Dobretsova A.; Bronstein I. Dual luminescence-based reporter gene assay for luciferase and beta-galactosidase. Biotechniques 21(3): 520–524; 1996.
Matronchik A. Y.; Belyaev I. Y. Mechanism for combined action of microwaves and static magnetic field: slow non uniform rotation of charged nucleoid. Electromagn. Biol. Med. 27 (4): 340–354; 2008.
Meggers E.; Michel-Beryele M. E.; Giese B. Sequence dependent long range hole transport in DNA. J. Am. Chem. Soc. 120: 12950–12955; 1998
Nair I.; Morgan M.; Florig H. Power frequency electric and magnetic field exposure, effects, research and regulation. US Congressional Office of Technology Assesment., Washington, DC; 1989.
Phillips J. L.; Haggren W.; Thomas W. J.; Ishida-Jones T.; Adey W. R. Magnetic field induced changes in specific gene transcription. Biochim. Biophys. Acta 1132: 140–144; 1992.
Porath D.; Bezryadin A.; De Vries S.; Dekker C. Direct measurement of electrical transport through DNA molecules. Nature 403 (6770): 635–638; 2000.
Rao S.; Henderson A. S. Regulation of c-fos is affected by electromagnetic fields. J. Cell. Biochem. 63: 358–365; 1996.
Robertson J. A.; Thomas A. W.; Bureau Y.; Prato F. S. The influence of extremely low frequency magnetic fields on cytoprotection and repair. Bioelectromagnetics 28: 16–30; 2007. Review.
Rodríguez-de la Fuente A. O.; Alcocer-González J. M.; Heredia-Rojas J. A.; Balderas-Candanosa I.; Rodríguez-Flores L. E.; Rodríguez-Padilla C.; Támez-Guerra R. S. Effect of 60 Hz electromagnetic fields on the activity of hsp 70 promoter: an in vitro study. Cell. Biol. Int. 33:419-23; 2009.
Sauer H.; Hescheler J.; Reis D.; Diedershagen H.; Niedermeier W.; Wartenberg W. DC electrical field-induced c-fos expression and growth stimulation in multicellular prostate cancer spheroids. Brit. J. Cancer. 75: 1481–1488; 1997.
Smith S. D.; McLeod B. R.; Liboff A. R.; Cooksey K. Calcium cyclotron resonance and diatom mobility. Bioelectromagnetics 8: 215–227; 1987.
Strasák L.; Bártová E.; Krejci J.; Fojt L.; Vetterl V. Effects of ELF-EMF on brain proteins in mice. Electromagn. Biol. Med. 28(1): 96–104; 2009.
Tokalov S. V.; Gutzeit H. O. Weak electromagnetic fields (50 Hz) elicit a stress response in human cells. Environ. Res. 94(2): 145–151; 2004.
Wan C.; Fiehig T.; Kelley S. O.; Treadway C. R.; Barton J. K. Femtosecond dynamics of DNA-mediated electron transfer. Proc. Nat. Acad. Sci. USA. 96: 6014-6019; 1999.
Zhadin M.; Barnes F. Frequency and amplitude windows in the combined action of DC and low frequency AC magnetic fields on ion thermal motion in a macromolecule: theoretical analysis. Bioelectromagnetics 26 (4): 323–330; 2005.