Edge data based trailer inception probabilistic matrix factorization for context-aware movie recommendation
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ai, X., Chen, H., Lin, K., Wang, Z., Yu, J.: Nowhere to hide: efficiently identifying probabilistic cloning attacks in Large-Scale RFID systems. IEEE Transactions on Information Forensics and Security 16, 714–727 (2021)
Altulyan, M., Yao, L., Wang, X., Huang, C., Kanhere, S.S., Sheng, Q.Z.: Recommender Systems for the Internet of Things: A Survey. arXiv:2007.06758
Asabere, N.Y., Xia, F., Wang, W., Rodrigues, J.J., Basso, F., Ma, J.: Improving smart conference participation through Socially-Aware recommendation. IEEE Trans. Human-Machine Syst. 44(5), 689–700 (2014)
Abu-El-Haija, S., Kothari, N., Lee, J., Natsev, P., Toderici, G., Varadarajan, B., Vijayanarasimhan, S: YouTube-8M:, A Large-Scale Video Classification Benchmark. arXiv:1609.08675
Aggarwal, C.C., Zhai, C.: A survey of text classification algorithms. Mining Text Data, pp. 163–222 (2012)
Baltrunas, L., Ludwig, B., Ricci, F.: Matrix factorization techniques for context aware recommendation. In: Proc. of ACM Recsys, Chicage, USA, pp 301–304 (2011)
Chen, H., Ai, X., Lin, K., Yan, N., Jiang, N., Wang, Z., Yu, J.: Fast and reliable missing tag detection for Multiple-Group RFID system. IEEE Transactions on Industrial Informatics 18, 345–355 (2022)
Cui, G., He, Q., Chen, F., Zhang, Y., Jin, H., Yang, Y.: Interference-aware game-theoretic device allocation for mobile edge computing. IEEE Transactions on Mobile Computing, https://doi.org/10.1109/TMC.2021.3064063
Chou, S.-Y., Jang, J.-S.R., Yang, Y.-H.: Fast tensor factorization for Large-Scale Context-Aware recommendation from implicit feedback. IEEE Trans. Big Data 6(1), 201–208 (2020)
Chen, H., Wang, S., Jiang, N., Li, Z., Yan, N., Shi, L.: Trust-aware generative adversarial network with recurrent neural network for recommender. Int. J. Intell. Syst. 36, 778–795 (2021)
Cui, Q., Wu, S., Liu, Q., Zhong, W., Wang, L.: MV-RNN: A Multi-View recurrent neural network for sequential recommendation. IEEE Trans. Knowl. Data Eng. 32(2), 317–331 (2020)
Chen, L., Xia, M.: A context-aware recommendation approach based on feature selection. Appl. Intell. 51(3), 865–875 (2020)
Ding, X., Wang, L., Shao, Z., Jin, H.: Efficient recommendation of de-identification policies using MapReduce. IEEE Trans. Big Data 5(3), 343–354 (2019)
Gong, Y., Jiang, Z., Feng, Y., Hu, B., Zhao, K., Liu, Q., Ou, W.: EdgeRec: Recommender System on Edge in Mobile Taobao. In: Proc. of ACM CIKM, pp. 2477–2484 (2020)
Guo, R., Xia, H., Li, J., Liu, D.: DRCGR: Deep reinforcement learning framework incorporating CNN and GAN-Based for interactive recommendation. In: Proc. of IEEE ICDM, Beijing, China, pp. 1048–1053 (2019)
Goldberg, M., Goldberg, R.: Data classification: algorithms and applications. Comput. Rev. 56(12), 724–725 (2015)
He, Q., Li, B., Chen, F., Grundy, J., Xia, X., Yang, Y.: Diversified Third-party Library Prediction for Mobile App Development. IEEE Transactions on Software Engineering, https://doi.org/10.1109/TSE.2020.2982154
Ioffe, S., Szegedy, C.: Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. In: Proc. of IEEE ICML, Lille France (2015)
Kim, Y.: Convolutional neural networks for sentence classification, In: Proc. of EMNLP, Doha, Qatar, pp. 1746–1751 (2014)
Kim, D., Park, C., Oh, J., Lee, S., Yu, H.: Convolutional matrix factorization for document context-aware recommendation, In: Proc. of ACM Recsys, Boston, MA, USA, pp. 233–240 (2016)
Lin, K., Chen, H., Yan, N., Li, Z., Li, J., Jiang, N.: Fast and reliable missing tag detection for multiple-group RFID system. IEEE Transactions on Industrial Informatics, https://doi.org/10.1109/TII.2021.305895
Liu, S., Yu, J., Deng, X., Wan, S.: FedCPF: An efficient-communication federated learning approach for vehicular edge computing in 6G communication networks. IEEE Transactions on Intelligent Transportation Systems, https://doi.org/10.1109/TITS.2021.3099368
Lai, P., He, Q., Xia, X., Chen, F., Abdelrazek, M., Grundy, J., Hosking, J.G., Yang, Y.: Dynamic user allocation in stochastic mobile edge computing systems. IEEE Transactions on Services Computing, https://doi.org/10.1109/TSC.2021.3063148
Li, Z., Chen, H., Lin, K., Shakhov, V., Shi, L., Yu, J.: From edge data to recommendation: A double attention-based deformable convolutional network. Peer-to-Peer Networking and Applications, https://doi.org/10.1007/s12083-020-01037-7
Li, A., Yang, B.: GSIRec: Learning with graph side information for recommendation. World Wide Web, https://doi.org/10.1007/s11280-021-00910-6
Li, Z., Wu, B., Liu, Q., Wu, L., Zhao, H., Mei, T.: Learning the compositional visual coherence for complementary recommendations. In: Proc. of IJCAI, Yokohama, Japan, pp. 3536–3543 (2021)
Liu, H., Xia, F., Chen, Z., Asabere, N.Y., Ma, J., Huang, R.: Trucom: Exploiting domain-specific trust networks for multi-category item recommendation. IEEE Syst. J 11(1), 295–304 (2017)
Liu, J., Xia, F., Wang, L., Xu, B., Kong, X., Tong, H., King, I.: Shifu2: A network representation learning based model for advisor-advisee relationship mining. IEEE Transactions on Knowledge and Data Engineering. https://doi.org/10.1109/TKDE.2019.2946825
Lai, S., Xu, L., Liu, K., Zhao, J.: Recurrent convolutional neural networks for text classification, In: Proc. of AAAI, Sydney, NSW, Australia, pp 2267–2273 (2015)
Macedo, A.Q., Marinho, L.B., Santos, R.L.T. (2015)
Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient Estimation of Word Representations in Vector Space. In: Proc. of IJCAI (2013)
Papineni, K., Roukos, S., Ward, T., Zhu, W.: BLEU: a Method for Automatic Evaluation of Machine Translation, In: Proc. of ACL, Philadelphia, pp 311–318 (2002)
Pan, W., Liu, Z., Ming, Z., Zhong, H., Wang, X., Xu, C.: Compressed knowledge transfer via factorization machine for heterogeneous collaborative recommendation. Konwledge-Based Syst. 85, 234–244 (2015)
Prabhakar, K.R., Srikar, V.S., Babu, R.V.: Deepfuse: A deep unsupervised approach for exposure fusion with extreme exposure image pairs. In: Proc. of IEEE ICCV, Italy, pp. 4714–4722 (2017)
Pennington, J., Socher, R., Manning, C.D.: GloVe: Global Vectors for Word Representation. In: Proc. of EMNLP, pp. 1532–1543 (2014)
Penhu, G., Hauff, C.: What does BERT know about books, movies and music? Probing BERT for Conversational Recommendation. In: Proc. of ACM Recsys, Rio de Janeriro, Brazil, pp 388–397 (2020)
Purushotham, S., Liu, Y., Kuo, C.-C.J.: Collaborative topic regression with social matrix factorization for recommendation systems, In: Proc. of IEEE ICML, Edinburgh, Scotland, UK, pp 759–766 (2012)
Salakhutdinov, R., Mnih, A.: Probabilistic matrix factorization. In: Proc. of NIPS, pp. 1257–1264 (2008)
Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Proc. of ICLR (2015)
Szegedy, C., Vanhoucke, V., Ioffe, S., Shelens, J.: Rethinking the inception architecture for computer vision. In: Proc. of IEEE CVPR, pp. 2818–2826 (2016)
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S.: Going Deeper with Convolutions. In: Proc. of IEEE CVPR (2014)
Unger, M., Tuzhilin, A., Livne, A.: Context-aware recommendations based on deep learning frameworks. ACM Trans. Manage. Inform. Syst. 11, 1–15 (2020). https://doi.org/10.1145/3386243
Vinyals, O., Toshev, A., Bengio, S., Erhan, D.: Show and Tell: A neural image caption generator. in: Proc. of IEEE CVPR, pp. 3156–3164 (2015)
Wang, W., Liu, J., Yang, Z., Kong, X., Xia, F.: Sustainable collaborator recommendation based on conference closure. IEEE Trans. Comput. Soc. Syst. 6(2), 311–322 (2019)
Wang, Z., Chen, H., Li, Z., Lin, K., Jiang, N., Xia, F.: VRConvMF: Visual recurrent convolutional matrix factorization for movie recommendation. IEEE Transactions on Emerging Topics in Computational Intelligence, pp 1–11 https://doi.org/10.1109/TETCI.2021.3102619 (2021)
Wan, S., Ding, S., Chen, C.: Edge computing enabled video segmentation for real-time traffic monitoring in internet of vehicles. Pattern Recogn. 121, 108146 (2022)
Wang, H., Wang, N., Yeung, D.-Y.: Collaborative deep learning for recommender systems, In: Proc. of ACM SIGKDD, Sydney, NSW, Australia, pp 1235–1244 (2015)
Xia, F., Ahmed, A.M., Yang, L.T., Ma, J., Rodrigues, J.J.: Exploiting social relationship to enable efficient replica allocation in ad-hoc social networks. IEEE Transactions on Parallel and Distributed Systems 25(12), 3167–3176 (2014)
Xia, F., Ahmed, A.M., Yang, L.T., Luo, Z.: Community-Based Event dissemination with optimal load balancing. IEEE Trans. Comput. 64(7), 1857–1869 (2014)
Xia, F., Asabere, N.Y., Ahmed, A.M., Li, J., Kong, X.: Mobile multimedia recommendation in smart communities: a survey. IEEE Access 1(1), 606–624 (2013)
Zarzour, H., Al-Sharif, Z., Al-Ayyoub, M., Jararweh, Y. (2018)
Zhao, L., Lu, Z., Pan, S. J., Yang, Q.: Matrix factorization+ for movie recommendation. In: Proc. of IJCAI, pp. 3945–3951 (2016)
Zhao, W., Wang, B., Yang, M., Ye, J., Zhao, Z., Chen, X., Shen, Y.: Leveraging long and Short-Term information in Content-Aware movie recommendation via adversarial training. IEEE Trans. Cybern. 50(11), 4680–4693 (2019)
Zhang, H., Qin, X., Zheng, H.: Research on contextual recommendation system of agricultural science and technology resource based on user portrait. Journal of Physics: Conference Series 1693 (1)
Zhang, J., Yang, Y., Zhuo, L., Tian, Q., Liang, X.: Personalized recommendation of social images by constructing a user interest tree with deep features and tag trees. IEEE Trans. Multimedia 21(11), 2762–2775 (2019)
Zhou, H., Wu, T., Zhang, H., Wu, J.: Incentive-driven deep reinforcement learning for content caching and D2D Offloading. IEEE Journal on Selected Areas in Communication 39(8), 2445–2460 (2021)
Zhou, H., Chen, X., He, S., Chen, J., Wu, J.: DRAIM: A novel delay-constraint and reverse auction-based incentive mechanism for WiFi Offloading. IEEE Journal on Selected Areas in Communication 38(4), 711–722 (2020)
Zhou, X., He, J., Huang, G., Zhang, Y.: SVD-Based incremental approaches for recommender systems. J. Comput. Syst. Sci. 81, 717–733 (2015)
Zhu, Q., Wang, D.: A SVM recommendation IoT model based on similarity evaluation and collaborative filtering of multi-angle knowledge units. Int. J. Comput. Appl. 42(3), 278–281 (2020)