Edge States in Honeycomb Structures

Annals of PDE - Tập 2 Số 2 - 2016
Charles Fefferman1, James Lee-Thorp2, Michael I. Weinstein3
1Department of Mathematics, Princeton University, Princeton, NJ, USA
2Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY, USA
3Department of Applied Physics and Applied Mathematics and Department of Mathematics, Columbia University, New York, NY, USA

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bahat-Treidel, O., Peleg, O., Segev, M.: Symmetry breaking in honeycomb photonic lattices. Opt. Lett. 33(19), 2251–2253 (2008)

Berkolaiko, G., Comech, A.: Symmetry and Dirac points in graphene spectrum. arXiv:1412.8096 (2014)

Dahlberg, B.E.J., Trubowitz, E.: A remark on two dimensional periodic potentials. Comment. Math. Helvetici 57, 130–134 (1982)

Eastham, M.: Spectral Theory of Periodic Differential Equations. Hafner Press, New York (1974)

Elbau, P., Graf, G.M.: Equality of bulk and edge Hall conductances revisted. Commun. Math. Phys. 229, 415–432 (2002)

Elgart, A., Graf, G.M., Shenker, J.H.: Equality of the bulk and the edge Hall conductances in a mobility gap. Commun. Math. Phys. 259, 185–221 (2005)

Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Topologically protected states in one-dimensional continuous systems and Dirac points. Proc. Nat. Acad. Sci., 07391, (2014)

Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Bifurcations of edge states—topologically protected and non-protected—in continuous 2D honeycomb structures. 2D Mater. 3, 014008 (2016)

Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Honeycomb Schrödinger operators in the strong binding regime. in preparation (2016)

Fefferman, C.L., Lee-Thorp, J.P., Weinstein, M.I.: Topologically protected states in one-dimensional systems. Mem. Am. Math. Soc., to appear

Fefferman, C.L., Weinstein, M.I.: Honeycomb lattice potentials and Dirac points. J. Am. Math. Soc. 25(4), 1169–1220 (2012)

Fefferman, C.L., Weinstein, M.I.: Wave packets in honeycomb lattice structures and two-dimensional Dirac equations. Commun. Math. Phys. 326, 251–286 (2014)

Friedrichs, K.O.: Perturbation of Spectra in Hilbert Space. American Mathematical Society, Providence (1965)

Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 6(3), 183–191 (2007)

Graf, J.-M., Porta, M.: Bulk-edge correspondence for two-dimensional topological insulators. Commun. Math. Phys. 324(3), 851–895 (2012)

Grushin, V.V.: Multiparameter perturbation theory of Fredholm operators applied to Bloch functions. Math. Notes 86(6), 767–774 (2009)

Haldane, F.D.M., Raghu, S.: Possible realization of directional optical waveguides in photonic crystals with broken time-reversal symmetry. Phys. Rev. Lett. 100(1), 013904 (2008)

Halperin, B.I.: Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25(4), 2185–2190 (1982)

Hatsugai, Y.: The Chern number and edge states in the integer quantum hall effect. Phys. Rev. Lett. 71, 3697–3700 (1993)

Kato, T.: Perturbation Theory for Linear Operators, vol. 132. Springer, New York (1995)

Katsnelson, M.: Graphene: Carbon in Two Dimensions. Cambridge University Press, Cambridge (2012)

Khanikaev, A.B., Mousavi, S.H., Tse, W.-K., Kargarian, M., MacDonald, A.H., Shvets, G.: Photonic topological insulators. Nat. Mater. 12, 233–239 (2013)

Kuchment, P.A.: Floquet theory for partial differential equations, vol. 60. Birkhauser, Basel (2012)

Kuchment, P.A.: An overview of periodic elliptic operators. Bull. Am. Math. Soc. 53(3), 343–414 (2016)

Lee-Thorp, J.P., Vukićević, I., Xu, X., Yang, J., Fefferman, C.L., Wong, C.W., Weinstein, M.I.: Photonic realization of topologically protected bound states in domain-wall waveguide arrays. Phys. Rev. A 93, 033822 (2016)

Lu, L., Joannopoulos, J.D., Soljačić, M.: Topological photonics. Nat. Photonics 8, 821 (2014)

Ma, T., Khanikaev, A.B., Mousavi, S.H., Shvets, G.: Topologically protected photonic transport in bi-anisotropic meta-waveguide. arXiv:1401.1276 (2014)

Macris, N., Martin, P.A., Pulé, J.V.: On edge states in semi-infinite quantum Hall systems. J. Phys. A 32(10), 1985 (1999)

Malkova, N., Hromada, I., Wang, X., Bryant, G., Chen, Z.: Observation of optical shockley-like surface states in photonic superlattices. Opt. Exp. 34(11), 1633–1635 (2009)

Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009)

Plotnik, Y., Rechtsman, M.C., Song, D., Heinrich, M., Zeuner, J.M., Nolte, S., Lumer, Y., Malkova, N., Xu, J., Szameit, A., Chen, Z., Segev, M.: Observation of unconventional edge states in ‘photonic graphene’. Nat. Mater. 13, 57–62 (2014)

Raghu, S., Haldane, F.D.M.: Analogs of quantum-Hall-effect edge states in photonic crystals. Phys. Rev. A 78(3), 033834 (2008)

Rechtsman, M.C., Zeuner, J.M., Plotnik, Y., Lumer, Y., Podolsky, D., Dreisow, F., Nolte, S., Segev, M., Szameit, A.: Photonic Floquet topological insulators. Nature 496, 196 (2013)

Reed, M., Simon, B.: Methods of Modern Mathematical Physics: Analysis of Operators, vol. IV. Academic Press, New York (1978)

Singha, A., Gibertini, M., Karmakar, B., Yuan, S., Polini, M., Vignale, G., Kastnelson, M.I., Pinczuk, A., Pfeiffer, L.N., West, K.W., Pellegrini, V.: Two-dimensional Mott-Hubbard electrons in an artificial honeycomb lattice. Science 332, 1176 (2011)

Skriganov, M.M.: Proof of the Bethe-Sommerfeld conjecture in dimension two. Soviet Math. Dokl. 20(5), 956–959 (1979)

Sommerfeld, A., Bethe, H.: Elektronentheorie der metalle. In Handbuch Physik (1933)

Taarabt, A.: Equality of bulk and edge hall conductances for continuous magnetic random Schrödinger operators. arXiv:1403.7767 (2014)

Thouless, D.J., Kohmoto, M., Nightgale, M.P., Den Nijs, M.: Quantized hall conductance in a two-dimensional periodic potential. Phys. Rev. Lett. 49, 405 (1982)

Wallace, P.R.: The band theory of graphite. Phys. Rev. 71, 622 (1947)

Wang, Z., Chong, Y.D., Joannopoulos, J.D., Soljacic, M.: Reflection-free one-way edge modes in a gyromagnetic photonic crystal. Phys. Rev. Lett. 100, 013905 (2008)

Wen, X.-G.: Topological orders and edge excitations in fractional quantum hall states. Adv. Phys. 44(5), 405–473 (1995)

Yu, Z., Veronis, G., Wang, Z., Fan, S.: One-way electromagnetic waveguide formed at the interface between a plasmonic metal under a static magnetic field and a photonic crystal. Phys. Rev. Lett. 100, 023902 (2008)

Zhang, Y., Tan, Y.-W., Stormer, H.L., Kim, P.: Experimental observation of the quantum Hall effect and Berry’s phase in graphene. Nature 438, 201–204 (2005)