Edge AI prospect using the NeuroEdge computing system: Introducing a novel neuromorphic technology
Tài liệu tham khảo
J.W. Kim, C.I. Nwakanma, J.M. Lee, D.S. Kim, Intelligent face recognition on the edge computing using neuromorphic technology, in: Proc. 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea (South), 2021, pp. 514–516, http://dx.doi.org/10.1109/ICOIN50884.2021.9333967.
2020
Kukkuru, 2019, 1
Schuman, 2017, 1
Guo, 2020, An Overhead-Free Max-Pooling Method for SNN, IEEE Embedded Syst. Lett., 12, 21, 10.1109/LES.2019.2919244
L. Shi, J. Pei, N. Deng, D. Wang, L. Deng, Y. Wang, Y. Zhang, F. Chen, M. Zhao, S. Song, F. Zeng, G. Li, H. Li, C. Ma, Development of a neuromorphic computing system, in: Proc. 2015 IEEE International Electron Devices Meeting (IEDM), http://dx.doi.org/10.1109/IEDM.2015.7409624.
Kim, 2017, Neuromorphic Hardware accelerated Lane detection system, IEICE Trans. Inf. Syst., 100-D, 2871, 10.1587/transinf.2017PAL0004
D.S. Chevitarese, M.N.D. Santos, Real-time face tracking and recognition on IBM neuromorphic chip, in: Proc. 2016 IEEE International Symposium on Multimedia (ISM), (2016), San Jose, CA, USA, 2016, pp. 667–672, http://dx.doi.org/10.1109/ISM.2016.0142.
Rajendran, 2019, Low-power neuromorphic hardware for signal processing applications: A review of architectural and system-level design approaches, IEEE Signal Process. Mag., 36, 97, 10.1109/MSP.2019.2933719
Kang, 2020, Energy efficiency of machine learning in embedded systems using neuromorphic hardware, Electronics, 9, 1
2019
Kim, 2020, New neuromorphic AI nm500 and its ADAS application, vol. 554
Lee, 2019, Power consumption and accuracy in detecting pedestrian images on neuromorphic hardware accelerated embedded systems, 1
V. Parmar, J. Ahn, M. Suri, Hyperspectral image classification for remote sensing using low-power neuromorphic hardware, in: Proc. 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, pp. 1–7, http://dx.doi.org/10.1109/IJCNN.2019.8852001.
Kang, 2020, Energy efficiency of machine learning in embedded systems using neuromorphic hardware, Electronics, 9, 1
Faris, 2017, Evolving radial basis function networks using moth-flame optimizer, 537
Minaee, 2020, 1
Bhardwaj, 2019, EdgeAI: A vision for deep learning in IoT Era, IEEE Des. Test