Edge AI prospect using the NeuroEdge computing system: Introducing a novel neuromorphic technology

ICT Express - Tập 7 - Trang 152-157 - 2021
Cosmas Ifeanyi Nwakanma1, Jae-Woo Kim1, Jae-Min Lee1, Dong-Seong Kim1
1Networked System Laboratory, Department of IT Convergence Engineering, Kumoh National Institute of Technology, Gumi, Republic of Korea

Tài liệu tham khảo

J.W. Kim, C.I. Nwakanma, J.M. Lee, D.S. Kim, Intelligent face recognition on the edge computing using neuromorphic technology, in: Proc. 2021 International Conference on Information Networking (ICOIN), Jeju Island, Korea (South), 2021, pp. 514–516, http://dx.doi.org/10.1109/ICOIN50884.2021.9333967. 2020 Kukkuru, 2019, 1 Schuman, 2017, 1 Guo, 2020, An Overhead-Free Max-Pooling Method for SNN, IEEE Embedded Syst. Lett., 12, 21, 10.1109/LES.2019.2919244 L. Shi, J. Pei, N. Deng, D. Wang, L. Deng, Y. Wang, Y. Zhang, F. Chen, M. Zhao, S. Song, F. Zeng, G. Li, H. Li, C. Ma, Development of a neuromorphic computing system, in: Proc. 2015 IEEE International Electron Devices Meeting (IEDM), http://dx.doi.org/10.1109/IEDM.2015.7409624. Kim, 2017, Neuromorphic Hardware accelerated Lane detection system, IEICE Trans. Inf. Syst., 100-D, 2871, 10.1587/transinf.2017PAL0004 D.S. Chevitarese, M.N.D. Santos, Real-time face tracking and recognition on IBM neuromorphic chip, in: Proc. 2016 IEEE International Symposium on Multimedia (ISM), (2016), San Jose, CA, USA, 2016, pp. 667–672, http://dx.doi.org/10.1109/ISM.2016.0142. Rajendran, 2019, Low-power neuromorphic hardware for signal processing applications: A review of architectural and system-level design approaches, IEEE Signal Process. Mag., 36, 97, 10.1109/MSP.2019.2933719 Kang, 2020, Energy efficiency of machine learning in embedded systems using neuromorphic hardware, Electronics, 9, 1 2019 Kim, 2020, New neuromorphic AI nm500 and its ADAS application, vol. 554 Lee, 2019, Power consumption and accuracy in detecting pedestrian images on neuromorphic hardware accelerated embedded systems, 1 V. Parmar, J. Ahn, M. Suri, Hyperspectral image classification for remote sensing using low-power neuromorphic hardware, in: Proc. 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, pp. 1–7, http://dx.doi.org/10.1109/IJCNN.2019.8852001. Kang, 2020, Energy efficiency of machine learning in embedded systems using neuromorphic hardware, Electronics, 9, 1 Faris, 2017, Evolving radial basis function networks using moth-flame optimizer, 537 Minaee, 2020, 1 Bhardwaj, 2019, EdgeAI: A vision for deep learning in IoT Era, IEEE Des. Test