Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Cuộn xoáy trong đại dương và khí quyển: Nhận dạng qua hình ảnh vệ tinh
Tóm tắt
Các kết quả được trình bày về việc sử dụng một phương pháp mới giúp phát hiện và tính toán các tham số của các cuộn xoáy trong đại dương và bão nhiệt đới trong khí quyển dựa trên hình ảnh vệ tinh. Phương pháp này dựa trên khái niệm hướng chiếm ưu thế của các tương phản nhiệt độ (DOTC). DOTC là một góc của sự định hướng có ý nghĩa thống kê về độ tương phản độ sáng trong khu vực xác định của hình ảnh. DOTC có tương quan cao với các hướng dòng chảy; nó là cơ sở để xây dựng các mô hình nhận diện các chuyển động cuộn xoáy, cụ thể là các cuộn xoáy thời tiết trong đại dương và các cơn bão nhiệt đới trong khí quyển. Việc xác định cuộn xoáy này theo mô hình cho phép ước lượng các tham số như vị trí trung tâm, hình dạng, kích thước và dấu hiệu (bão hay áp cao) của cuộn xoáy, và kích thước của mắt bão nhiệt đới. Dựa trên phương pháp đã đề xuất, các công nghệ nhận diện và giám sát tự động các cuộn xoáy đại dương và bão nhiệt đới đã được phát triển. Các kết quả của việc sử dụng thực tiễn các công nghệ này được trình bày cho những năm gần đây.
Từ khóa
#cuộn xoáy #đại dương #khí quyển #hình ảnh vệ tinh #bão nhiệt đới #nhận dạng cuộn xoáyTài liệu tham khảo
A. O. Agurenko, A. M. Kolesov, A. A. Korshunov, et al., “Estimation of Economic Value of Satellite Data for Predicting Convective Events during the Warm Season,” Meteorol. Gidrol., No. 5 (2014) [Russ. Meteorol. Hydrol., No. 5, 39 (2014)].
A. I. Aleksanin and M. G. Aleksanina, “Automatic Identification of Eddies from Satellite Infrared Imagery,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, 1 (2004) [in Russian].
A. I. Aleksanin and M. G. Aleksanina, “Identification of Synoptic Oceanic Eddies and Estimation of Their Spatial Parameters from the NOAA Satellite Data,” in Visualization in the Studies of World Ocean Biological Resources: Proceedings of the Sectoral Workshop (TINRO-Tsentr, Vladivostok, 2003) [in Russian].
A. I. Aleksanin and M. G. Aleksanina, “Investigating the Composite Fields of Thermal Structures on the Sea Surface under Cloudy Conditions from the NOAA Satellite Data,” Solnechno-zemnaya Fizika, No. 5 (2004) [in Rus sian].
A. I. Aleksanin, M. G. Aleksanina, and I. I. Gorin, “Satellite Infrared Images: From Thermal Structures to the Velocity Field,” Issledovanie Zemli iz Kosmosa, No. 2 (2001) [in Russian].
A. I. Aleksanin, M. G. Aleksanina, and A. Yu. Karnatskii, “Automatic Computation of Sea Surface Velocities by a Sequence of Satellite Images,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 2, 10 (2013) [in Russian].
A. I. Aleksanin and A. S. Eremenko, “Automatic Computation of Tropical Cyclone Trajectories from MTSAT_1R Geostationary Satellite Data,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 2, 4 (2007) [in Russian].
A. I. Aleksanin and A. S. Eremenko, “Automatic Computation of Tropical Cyclone Trajectories from Meteorological Geostationary Satellite Data,” Issledovanie Zemli iz Kosmosa, No. 5 (2009) [in Russian].
A. I. Aleksanin and A. A. Zagumennov, “Automatic Identification of Oceanic Eddies and Computation of Their Shape,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 2, 5 (2008) [in Russian].
A. I. Aleksanin and A. A. Zagumennov, “Problems of Automatic Identification of Oceanic Eddies from Satellite Infrared Imagery,” Issledovanie Zemli iz Kosmosa, No. 3 (2011) [in Russian].
M. G. Aleksanina, “Automatic Identification of Sea Surface Structures from NOAA Satellite Infrared Data,” Issledovanie Zemli iz Kosmosa, No. 3 (1997) [in Russian].
Z. V. Andreeva, “Using the Optical and Radar Satellite Images for the Analysis of Ecological Conditions in the Marine Environment,” Meteorol. Gidrol., No. 2 (2013) [Russ. Meteorol. Hydrol., No. 2, 38 (2013)].
A. I. Ginzburg, A. G. Kostyanoi, and A. G. Ostrovskii, “Surface Circulation in the Sea of Japan (Satellite and Drifting Buoy Data),” Issledovanie Zemli iz Kosmosa, No. 1 (1998) [in Russian].
A. S. Eremenko, Automatic Monitoring of Tropical Cyclones from Meteorological Satellite Data, Abstracts of the Candidate’s Dissertation in Technical Sciences (Institute of Automation and Control Processes of FEB RAS, Vladivostok, 2014) [in Russian].
A. S. Eremenko, “Trial Operation of the System of Automatic Monitoring of Tropical Cyclones,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 10 (2013) [in Russian].
A. S. Eremenko and D. A. Bolovin, “The System of Automatic Detection of Tropical Cyclones and Computation of Their Geometric and Thermodynamic Parameters,”in Proceedings of the Conference “The Use of the Means and Resources of the Unified Na tional System of Information on World Ocean Conditions for Informational Support of Marine Activities in the Russian Federation” (ESIMO-2012) (VNIIGMI-MTsD, Obninsk, 2012) [in Russian].
A. S. Eremenko, V. S. Eremenko, and I. V. Nedoluzhko, “Organization of Automatic Calculation and Delivery of Tropical Cyclone Trajectories to ESIMO,” Geoinformatika, No. 4 (2014) [in Russian].
A. A. Zagumennov, “Trial Operation of the System of Operational Automatic Monitoring of Synoptic Oceanic Eddies from the Satellite Data,” in Mathematical Modeling and Information Technologies in the Studies of World Ocean Biological Resources. Proceedings of the Sectoral Workshop (TINRO-Tsentr, Vladivostok, 2013) [in Russian].
O. Yu. Lavrova, A. G. Kostyanoi, S. A. Lebedev, et al., Complex Satellite Monitoring of the Russian Seas (IKI RAN, Moscow, 2011) [in Russian].
M. S. Permyakov and E. Yu. Potalova, “Mesoscale Structure of Tropical Cyclones,” Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa, No. 1, 10 (2013) [in Russian].
L. I. Petrova, “Estimating the Maximum Potential Intensity of Tropical Cyclones,” Meteorol. Gidrol., No. 6 (2010) [Russ. Meteorol. Hydrol., No. 6, 35 (2010)].
L. I. Petrova, “Radial Structure of Tangential Wind in a Tropical Cyclone as Derived from Observation Data,” No. 3 (1995) [Russ. Meteorol. Hydrol., No. 3 (1995)].
I. V. Pokrovskaya and E. A. Sharkov, Tropical Cyclones and Tropical Disturbances of the World Ocean: Chronology and Evolution (2006-2010). Version 4.1 (KDU, Moscow, 2011) [in Russian].
E. Yu. Potalova, M. S. Permyakov, and T. I. Kleshcheva, “Mesoscale Structure of Tropical Cyclones in the Surface Wind Field,” Meteorol. Gidrol., No. 11 (2013) [Russ. Meteorol. Hydrol., No. 11, 38 (2013)].
Recommendations on the Use of Satellite Infrared Images in Oceanological Studies (TINRO, Vladivostok, 1984) [in Russian].
D. M. Sonechkin, Meteorological Interpretation of Satellite Images (Quantitative Methods) (Gidrometeoizdat, Leningrad, 1972) [in Russian].
N. I. Tolmacheva, Space Research Methods in Meteorology. Interpretation of Satellite Imagery (Permskii Gos. Nats. Issled. Univ., Perm, 2012) [in Russian].
K. N. Fedorov, Physical Nature and Structure of Oceanic Fronts (Gidrometeoizdat, Leningrad, 1987) [in Russian].
K. S. Casey and P. Cornillo, “A Comparison of Satellite and in Situ-based Sea Surface Temperature Climatologies,” J. Climate, 12 (1999).
M. Castellani, “Identification of Eddies from Sea Surface Temperature Maps with Neural Networks,” Int. J. Remote Sensing, 27 (2006).
C. Dong, F. Nencioli, Y. Liu, and J. McWilliams, “An Automated Approach to Detect Oceanic Eddies from Satellite Remotely Sensed Sea Surface Temperature Data,” IEEE Geoscience and Remote Sensing Lett., No. 6, 8 (2011).
V. F. Dvorak, “Tropical Cyclone Intensity Analysis and Forecasting from Satellite Imagery,” Mon. Wea. Rev., 103 (1975).
A. M. Fernandes, “Study of the Automatic Recognition of Oceanic Eddies in Satellite Images by Ellipse Center Detection—The Iberian Coast Case,” IEEE Transaction of Geoscience and Remote Sensing, No. 8, 47 (2009).
J. Hai, Y. Xiaomei, G. Jianming, and G. Zhenyu, “Automatic Eddy Extraction from SST Imagery Using Artificial Neural Networks,” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Science, Pt B6b, 37 (2008).
B. Lemonnier, R. Delmas, C. Lopez, and E. Duporte, “Multiscale Analysis of Shapes Applied to Thermal Infrared Sea Images,” in Proceedings of Ocean’94 OSATES, Brest, France, 13-16 September, Vol. 3 (Brest, 1994).
T. L. Pao, J. H. Yeh, M. Y. Liu, and Y. C. Hsu, “Locating the Typhoon Center from the IR Satellite Cloud Images,” Proc. System, Man and Cybernetics, 1 (2006).
H. Thornet, B. Lemmonier, and R. Delmas, “Automatic Segmentation of Oceanic Eddies on AVHRR Thermal Infrared Sea Surface Images,” in Proceedings of OCEANS’95, Vol. 2 (San Diego, 1995).
W. K. Yan, C. L. Yip, P. W. Li, and W. W. Tsang, “Automatic Template Matching Method for Tropical Cyclone Eye Fix,” in 17th International Conference on Pattern Recognition (ICPR’04), Vol. 3 (2004).
A. A. Zagumennov, “Automatic System for Monitoring of Mesoscale Ocean Eddies Using Remote Sensing Data,” in Remote Sensing of Environment: Scientific and Applied Research in Asia-Pacific (RSAP2013): Abstracts of the International Conference, 24-27 September 2013, Vladivostok, Russia (Dalnauka, Vladivostok, 2013).