Edaphic Controls on Soil Organic Carbon Retention in the Brazilian Cerrado: Texture and Mineralogy

Soil Science Society of America Journal - Tập 71 Số 4 - Trang 1204-1214 - 2007
Yuri Lopes Zinn1, Rattan Lal1, Jerry M. Bigham1, D. V. S. Resck2
1School of Natural Resources, Ohio State Univ. 2021 Coffey Rd. Columbus OH 43210‐1085
2Embrapa Cerrados Agric. Research Center P.O. Box 08223 73310‐970 Planaltina DF Brazil

Tóm tắt

Soil organic carbon (SOC) retention is a function of climate, vegetation, drainage, and management interactions, but also of intrinsic soil properties such as texture, mineralogy, and structure. To assess these edaphic controls, three soils of the Brazilian savanna (Cerrado) under similar climate, vegetation, and slope but of contrasting texture were sampled to 1‐m depth and characterized for textural, chemical, and mineralogical properties, and SOC concentration (in bulk samples and clay, silt, and sand fractions). The basic assumption was that SOC particle size determines its retention mechanism: colloidal forms are retained by sorption, while particulate organic matter (>20 μm) can occur outside or inside aggregates. It was hypothesized that SOC retention is controlled simultaneously by soil texture, mineralogy, and depth. The three soils are clayey, loamy, and sandy Haplustox, all kaolinitic with minor contents of Fe and Al oxides, vermiculite, and illite. The SOC concentrations in particle size fractions were inversely related to the content of the respective fraction in soil (SOC dilution effect), thus SOC partition is better assessed by determination of SOC pools in each particle size on a total soil mass basis rather than on a size‐fraction concentration basis. The positive linear relations between SOC and clay + silt concentrations in bulk soil were explained mostly by greater clay‐sized SOC pools, which could be modeled as a function of clay content (related to specific surface area) and depth. Quantitative clay mineralogy showed that bulk SOC and clay‐sized SOC pools were well correlated with Fe oxides in topsoil and amorphous Al oxides in subsoil, but this mineralogical control is secondary to the textural control, since it depends on clay content.

Từ khóa


Tài liệu tham khảo

10.2136/sssaj1998.03615995006200010023x

Bennema J., 1974, Organic carbon profiles in Oxisols, Pedologie, 24, 119

10.1071/SR02044

Bremer J.M., 1965, Soil nitrogen, 93

10.1021/ja01269a023

10.4141/S01-087

Centro Nacional de Pesquisa de Solos, 1997, Manual de métodos de análise de solos

10.1007/978-1-4612-2930-8_1

10.1071/SR9860281

10.2136/sssaj2004.0203

Feller C., 1996, Structure and organic matter storage in agricultural soils, 309

10.1016/S0016-7061(97)00039-6

Feller C., 1991, Effet de la texture sur le stockage et la dynamique des matières organiques dans quelques sols ferrugineux et ferralitiques (Afrique de l Ouest, en particulier), Cah. ORSTOM Ser. Pedol, 26, 25

10.1097/00010694-199204000-00005

10.1016/j.geoderma.2004.02.008

Gonzalez J.V.Role of clay minerals on soil organic matter stabilization and humification. Ph.D. diss. (Diss. Abstr. 3073447). Iowa State Univ. Ames.2002

10.1023/A:1004213929699

10.2136/sssaj1997.03615995006100010020x

10.1111/j.1365-2389.1982.tb01785.x

10.2136/sssaj1989.03615995005300050013x

Jenny H., 1941, Factors of soil formation—A system of quantitative pedology

10.1046/j.1365-2389.2002.00487.x

10.1016/j.orggeochem.2003.11.008

10.1046/j.1365-2389.2003.00544.x

10.2136/sssaj1997.03615995006100010011x

10.1097/00010694-200004000-00001

10.2136/1994.quantitativemethods.c12

Kay B.D., 1998, Soil processes and the carbon cycle, 169

10.1111/j.1365-2389.2005.00706.x

10.2136/sssaj2003.1823

10.1016/S0016-7061(02)00291-4

10.1111/j.1475-2743.1994.tb00455.x

10.1346/CCMN.1958.0070122

10.1071/SR05136

Moraes J.L., 1995, Soil carbon stocks of the Brazilian Amazon Basin, Soil Sci. Soc. Am. J, 29, 244, 10.2136/sssaj1995.03615995005900010038x

10.1016/j.soilbio.2003.12.015

10.2136/sssaj1978.03615995004200010030x

10.1007/BF02180317

10.1071/SR9910815

10.7312/oliv12042-007

Oorts K., 2005, Redistribution of particulate organic matter during ultrasonic dispersion of highly weathered soils, Eur. J. Soil Sci, 56, 79, 10.1111/j.1351-0754.2004.00654.x

10.1111/j.1365-2389.1977.tb02237.x

10.1023/A:1004552016182

Rutledge E.M. Wilding L.P. andElfield M.Automated particle size‐separation by sedimentation.Soil Sci. Soc. Am. Proc.196731287–288.https://doi.org/10.2136/sssaj1967.03615995003100020039x

10.2136/sssaspecpub29.c3

Sawhney B.L., 1994, Quantitative methods in soil mineralogy, 49

10.1007/s003740050020

10.1002/jpln.3591050303

10.1046/j.1365-2389.2003.00523.x

10.2136/sssaj1998.03615995006200050015x

10.2136/sssaj2000.6462149x

Silva J.E., 1994, Perdas de matéria orgânica e suas relações com a capacidade de troca catiônica em solos da região de Cerrados do oeste baiano, Rev. Bras. Cienc. Solo, 18, 541

10.1007/s100210000019

10.1023/A:1016125726789

10.1016/S0016-7061(96)00036-5

10.1016/j.geoderma.2003.11.003

Teixeira J.R., 2002, Soil mineralogy with environmental applications, 819

10.1029/2002GB001953

10.1097/00010694-199701000-00005

Varadachari C., 1995, The influence of crystal edges on clay–humus complexation, Soil Sci, 159, 185, 10.1097/00010694-199503000-00005

10.2136/sssaj2003.3350

10.2136/sssaj2004.1540

10.1016/S0016-7061(00)00062-8

10.1111/j.1351-0754.2004.00655.x

Zinn Y.L.Textural mineralogical and structural controls on soil organic carbon retention in the Brazilian Cerrados. Ph.D. diss. (Diss. Abstr. 3197771). Available at (verified 30 Mar. 2007). Ohio State Univ. Columbus.2005

10.1016/j.still.2004.08.007

10.1016/j.geoderma.2005.02.010

10.1016/S0378-1127(01)00682-X