Ecuaciones en derivadas parciales gobernadas por operadores acretivos
Tóm tắt
Từ khóa
Tài liệu tham khảo
F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, Minimizing Total Variation Flow. Differential and Integral Equations 14 (2001), 321–360.
F. Andreu, C. Ballester, V. Caselles and J.M. Mazón, The Dirichlet Problem for the Total Variation Flow. Journal of Functional Analysis. 180 (2001), 347–403.
F. Andreu, V. Caselles, J.I. Díaz and J.M. Mazón, Some qualitative properties for the total variation flow. J. Funct. Anal. 188 (2002), 516–547.
F. Andreu, V. Caselles and J.M. Mazón, A Parabolic Quasilinear Problem for Linear Growth Functionals. Rev. Mat. Iberoamericana 18 (2002), 135–185.
F. Andreu, V. Caselles and J.M. Mazón, Existence and Uniqueness of Solution for a Parabolic Quasilinear Problem for Linear Growth Functionals. Math. Ann. 322 (2002), 139–206.
F. Andreu, V. Caselles and J.M. Mazón, The Cauchy Problem for Linear Growth Functionals. J. Evol. Equ. 3 (2003), 39–65.
F. Andreu, V. Caselles, and J.M. Mazon, Parabolic Quasilinear Equations Minimizing Linear Growth Functionals. Progress in Mathematics, vol. 223, 2004. Birkhauser.
F. Andreu, V. Caselles and J.M. Mazón, A strongly degenerate quasilinear equation: the elliptic case. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 3 (2004), 555–587.
F. Andreu, V. Caselles and J.M. Mazón, A strongly degenerate quasilinear equation: the parabolic case. Arch. Ration. Mech. Anal. 176 (2005), 415–453.
F. Andreu, V. Caselles and J.M. Mazón, A strongly degenerate quasilinear elliptic equation. Nonlinear Anal. 61 (2005), 637–669.
F. Andreu, V. Caselles and J.M. Mazón, The Cauchy problem for a strongly degenerate quasilinear equation. J. Eur. Math. Soc. 7 (2005), 361–393.
F. Andreu, V. Caselles and J.M. Mazón, Some regularity results on the relativistic heat equation. J. Differential Equations 245 (2008), 3639–3663.
F. Andreu, V. Caselles, J.M. Mazón and S. Moll, Finite Propagation Speed for Limited Flux Diffusion Equations. Arch. Ration. Mech. Anal. 182 (2006), 269–297.
F. Andreu, V. Caselles, J.M. Mazón and S. Moll, A diffusion equation in transparent media. J. Evol. Equ. 7 (2007), 113–143.
F. Andreu, V. Caselles, J.M. Mazón and S. Moll, The Dirichlet problem associated to the relativistic heat equation. To appear in Math. Ann.
F. Andreu, N. Igbida, J.M. Mazón and J. Toledo, A degenerate elliptic-parabolic problem with nonlinear dynamical boundary conditions. Interfaces Free Bound. 8 (2006), 447–479.
F. Andreu, N. Igbida, J.M. Mazón and J. Toledo, L 1 existence and uniqueness results for quasi-linear elliptic equations with nonlinear boundary conditions. Ann. Inst. H. Poincaré Anal. Non Linéaire 24 (2007), 61–89.
F. Andreu, N. Igbida, J.M. Mazón and J. Toledo, Renormalized solutions for degenerate elliptic-parabolic problems with nonlinear dynamical boundary conditions and L 1 -data. J. Differential Equations 244 (2008), 2764–2803.
F. Andreu, J.M. Mazón and S. Moll, The Total Variation Flow with Nonlinear Boundary Conditions. Asymptotic Analysis 43 (2005), 9–46.
F. Andreu, J.M. Mazón, S. Segura and J. Toledo, Quasi-linear elliptic and parabolic equations in L 1 with nonlinear boundary conditions. Adv. in Math Sci. and Appl. 7, (1997), 183–213.
F. Andreu, J.M. Mazón, S. Segura and J. Toledo, Existence and uniqueness of solutions for a degenerate parabolic equation with L 1 -data. Trans. Amer. Math. Soc. 351 (1999), 285–306.
F. Andreu, J.M. Mazón and J. Toledo, Asymptotic behaviour of solutions of quasi-linear parabolic equations with non-linear flux. Comput. Appl. Math. 17 (1998), 203–217.
F. Andreu, J.M. Mazón, J Rossi and J. Toledo, The Neumann problem for nonlocal nonlinear diffusion equations. J. Evol. Equ. 8 (2008), 189–215.
F. Andreu, J.M. Mazón, J Rossi and J. Toledo, A nonlocal p-Laplacian evolution equation with Neumann boundary conditions. J. Math. Pures Appl. 90 (2008), 201–227.
F. Andreu, J.M. Mazón, J Rossi and J. Toledo, A nonlocal p-Laplacian evolution equation with nonhomogeneous Dirichlet boundary conditions. SIAM J. Math. Anal. 40 (2009), 1815–1851.
F. Andreu, J.M. Mazón, J Rossi and J. Toledo, The limit as p → ∞ in a nonlocal p-Laplacian evolution equation. A nonlocal approximation of a model for sandpiles. Calc. Var. Partial Differential Equations. 35, (2009), 279–316.
F. Andreu, J.M. Mazón,.J Rossi and J. Toledo, Evolution problems with nonlocal diffusion. Aceptado para su publicación Mathematical Surveys and Monographs (AMS).
G. Anzellotti, Pairings Between Measures and Bounded Functions and Compensated Compactness, Ann. di Matematica Pura ed Appl. IV(135) (1983), 293–318.
G. Aronsson, L. C. Evans and Y. Wu. Fast/slow diffusion and growing sandpiles. J. Differential Equations, 131 (1996), 304–335.
V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff International Publisher, 1976.
Ph. Bénilan, Equations d’évolution dans un espace de Banach quelconque et applications, Thése Orsay, 1972.
Ph. Benilan, L. Boccardo, Th. Gallouet, R. Gariepy, M. Pierre and J.L. Vazquez, An L 1 -Theory of Existence and Uniqueness of Solutions of Nonlinear Elliptic Equations Ann. Sc. Norm. Sup. Pisa 22 (1995), 241–273.
Ph. Bénilan and M.G. Crandall, Completely Accretive Operators, in Semigroups Theory and Evolution Equations. Ph. Clement et al. editors, Marcel Dekker, 1991, pp. 41–76.
Ph. Bénilan, M.G. Crandall and A. Pazy, Evolution Equations Governed by Accretive Operators, Forthcoming.
H. Brezis, Operateurs Maximaux Monotones. North Holland, Amsterdam, 1973.
H. Brezis and A. Pazy. Convergence and approximation of semigroups of nonlinear operators in Banach spaces. J. Functional Analysis, 9 (1972), 63–74.
M.G. Crandall, Semigroups of Nonlinear Transformations in Banach Spaces. In Contribution to Nonlinear Functional Analysis (E.H. Zarantonello, ed.) Academic Press, New York 1971, 149–179.
M.G. Crandall, The semigroup approach to first order quasilinear equations in several space variables. Israel J. Math. 12 (1972), 108–132.
M.G. Crandall, Nonlinear Semigroups and Evolution Governed by Accretive Operators. In Proceeding of Symposium in Pure Mat., Part I (F. Browder, ed.) A.M.S., Providence 1986, 305–338.
M.G. Crandall and T.M. Liggett, Generation of Semigroups of Nonlinear Transformations on General Banach Spaces. Amer. J. Math. 93 (1971), 265–298.
M.G. Crandall and P.L. Lions, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc. 277 (1983), 1–42.