Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Biểu hiện gen lạ trong võng mạc của bốn dòng chuột chuyển gen
Tóm tắt
Biểu hiện của các gen chuyển giao được kiểm tra trong bốn dòng chuột. Hai cấu trúc được điều khiển bởi promoter choline acetyltransferase (ChAT): protein huỳnh quang xanh liên hợp với protein tau (tau-GFP) hoặc protein huỳnh quang vàng trong thể chất (YFP) được tạo ra thông qua sự biểu hiện của Rosa26 do CRE recombinase kích thích (ChAT-CRE/Rosa26YFP). Hai cấu trúc khác nhắm đến các interneuron ức chế: các tế bào ngang GABAergic và tế bào amacrine được xác định bằng glutamic acid decarboxylase (GAD65-GFP) hoặc tế bào parvalbumin (PV) (PV-CRE/Rosa26YFP). Các động vật đã được tưới ngược qua tim và các lát võng mạc được chuẩn bị. Kháng thể chống PV, calretinin (CALR), calbindin (CALB) và tyrosine hydroxylase (TH) được sử dụng để nhuộm ngược tế bào biểu hiện gen chuyển giao. Trong các cấu trúc PVxRosa và ChAT-tauGFP, nhuộm xuất hiện trong hàng dọc hướng thẳng đứng của các quá trình giống như tế bào Müller. Trong cấu trúc ChATxRosa, các quần thể tế bào amacrine và nơron trong lớp tế bào hạch được gán nhãn. Một số tế bào hình nón cũng cho thấy sự phát sáng của GFP. CALR, PV và TH không được tìm thấy trong các tế bào này. Thỉnh thoảng, chúng tôi phát hiện tế bào nhuộm kép GFP/CALR và GFP/PV trong lớp tế bào hạch (GCL). Trong cấu trúc GAD65-GFP, tất cả các lớp của neuroretina đều được đánh dấu, ngoại trừ các tế bào cảm quang. Không phải tất cả các tế bào ngang đều biểu hiện GFP. Chúng tôi không tìm thấy các tế bào nhuộm kép GFP/TH và GFP hiếm khi có mặt trong các tế bào chứa CALR và CALB. Nhiều nơron dương tính với PV cũng được đánh dấu cho GFP, bao gồm các tế bào amacrine đường kính nhỏ. Trong GCL, nhuộm đơn cho GFP và PV đã được xác nhận, cũng như một số nơron nhuộm kép CALR/PV. Trong GCL, các tế bào nhuộm ba với GFP/CALR/CALB là hiếm. Kết luận, chỉ có một trong bốn cấu trúc chuyển gen cho thấy mô hình biểu hiện nhất quán với biểu hiện protein võng mạc nội sinh, trong khi những cấu trúc còn lại mạnh mẽ gợi ý về biểu hiện gen lạ.
Từ khóa
#gen chuyển giao #võng mạc #chuột chuyển gen #biểu hiện gen #tế bào amacrine #tế bào GABAergicTài liệu tham khảo
Badea TC, Nathans J (2004) Quantitative analysis of neuronal morphologies in the mouse retina visualized by using a genetically directed reporter. J Comp Neurol 480:331–351
Bagnoli P, Dal Monte M, Casini G (2003) Expression of neuropeptides and their receptors in the developing retina of mammals. Histol Histopathol 18:1219–1242
Cepko CL (1999) The roles of intrinsic and extrinsic cues and bHLH genes in the determination of retinal cell fates. Curr Opin Neurobiol 9:37–46
Deniz S, Wersinger E, Schwab Y, Mura C, Erdelyi F, Szabo G, Rendon A, Sahel JA, Picaud S, Roux MJ (2011) Mammalian retinal horizontal cells are unconventional GABAergic neurons. J Neurochem 116:350–362
Dhingra A, Sulaiman P, Xu Y, Fina ME, Veh RW, Virdi N (2008) Probing neurochemical structure and function of retinal ON bipolar cells with a transgenic mouse. J Comp Neurol 510:484–496
Fei Y, Hughes TE (2001) Transgenic expression of the jellyfish green fluorescent protein in the cone photoreceptors of the mouse. Vis Neurosci 18:615–623
Gábriel R, Wilhelm M, Straznicky C (1992) Microtubule-associated protein 2 (MAP2)-immunoreactive neurons in the retina of Bufo marinus: colocalisation with tyrosine hydroxylase and serotonin in amacrine cells. Cell Tissue Res 269:175–182
Gong S, Doughty M, Harbaugh CR, Cummins A, Hatten ME, Heintz N, Gerfen CR (2007) Targeting Cre recombinase to specific neuron populations with bacterial artificial chromosome constructs. J Neurosci 12:9817–9823
Grybko MJ, Hamh E, Perrine W, Parnes JA, Chick WS, Sharma G, Finger TE, Vijayaraghavan S (2011) A transgenic mouse model reveals fast nicotinic transmission in hippocampal pyramidal neurons. Eur J Neurosci 33:1786–1798
Gustincich S, Feigenspan A, Wu D-DK, Koopman LJ, Raviola E (1997) Control of dopamine release in the retina: a transgenic approach to neural networks. Neuron 18:723–736
Hamazaki T, Kehoe SM, Nakano T, Terada N (2006) The Grb2/Mek pathway represses Nanog in murine embryonic stem cells. Mol Cell Biol 26:7539–7549
Hao MM, Bornstein JC, Young HM (2013) Development of myenteric cholinergic neurons in ChAT-Cre;R26R-YFP Mice. J Comp Neurol 531:3358–3370
Haverkamp S, Wässle H (2000) Immunocytochemical analysis of the mouse retina. J Comp Neurol 424:1–23
Haverkamp S, Inta D, Monyer H, Wässle H (2009) Expression analysis of green fluorescent protein in retinal neurons of four transgenic mouse lines. Neuroscience 160:126–139
Hippenmeyer S, Vrieseling E, Sigrist M, Portmann T, Laengle C, Ladle DR, Arber S (2005) A developmental switch in the response of DRG neurons to ETS transcription factor signaling. PLoS Biol 3:e159
Huberman AD, Manu M, Koch SM, Susman MW, Lutz AB, Ullian EM, Baccus SA, Barres BA (2008) Architecture and activity-mediated refinement of axonal projections from a mosaic of genetically identified retinal ganglion cells. Neuron 59:425–438
Inoue T, Hojo M, Bessho Y, Tano Y, Lee JE, Kageyama R (2002) Math3 and NeuroD regulate amacrine cell fate specification in the retina. Development 129:831–842
Ivanova E, Hwang G-S, Pan Z-H (2010) Characterization of transgenic mouse lines expressing Cre recombinase. Neuroscience 135:233–243
Kiecker C, Niehrs C (2001) A morphogen gradient of Wnt/beta-catenin signalling regulates anteroposterior neural patterning in Xenopus. Development 128:4189–4201
Knop GC, Pottek M, Monyer H, Weiler R, Dedek K (2014) Morphological and physiological properties of enhanced green fluorescent protein (EGFP)-expressing wide-field amacrine cells in the ChAT-EGFP mouse line. Eur J Neurosci 39:800–810
Lopez-Bendito G, Sturgess K, Erdélyi F, Szabó G, Molnár Z, Paulsen O (2004) Preferential origin and layer destination of GAD65-GFP cortical interneurons. Cereb Cortex 14:1122–1133
Madisen L, Zwingman TA, Sunkin SM, Oh SW, Zariwala HA, Gu H, Ng LL, Palmiter RD, Hawrylycz MJ, Jones AS, Lein ES, Zeng H (2009) A robust and high-throughput Cre reporting and characterization system for the whole mouse brain. Nature Neurosci 13:133–142
Marquardt T, Ashery-Padan R, Andrejewski N, Scardigli R, Guillemot F, Gruss P (2001) Pax6 is required for the multipotent state of retinal progenitor cells. Cell 105:43–55
May CA, Nakamura K, Fujiyama F, Yanagawa Y (2008) Quantification and characterization of GABA-ergic amacrine cells in the retina of GAD67-GFP knock-in mice. Acta Ophthalmol 86:395–400
Meyer AH, Katona I, Blatow M, Rozov A, Monyer H (2002) In vivo labeling of parvalbumin-positive interneurons and analysis of electrical coupling in identified neurons. J Neurosci 22:7055–7064
Mieziewska KE, van Veen T, Murray JM, Aguirre GD (1991) Rod and cone specific domains in the interphotoreceptor matrix. J Comp Neurol 308:371–380
Morrow EM, Furukawa T, Lee JE, Cepko CL (1999) NeuroD regulates multiple functions in the developing neural retina in rodent. Development 126:23–36
Mosinger JL, Yazulla S, Studhulme KM (1986) GABA-like immunoreactivity in the vertebrate retina: a species comparison. Exp Eye Res 42:631–644
Pang JJ, Gao F, Wu SM (2003) Light-evoked excitatory and inhibitory synaptic inputs to ON and OFF ganglion cells in the mouse retina. J Neurosci 23:6063–6073
Pereira L, Yi F, Merrill BJ (2006) Repression of Nanog gene transcription by Tcf3 limits embryonic stem cell self-renewal. Mol Cell Biol 26:7479–7491
Rapaport DH, Wong LL, Wood ED, Yasumura D, LaVail MM (2004) Timing and topography of cell genesis in the rat retina. J Comp Neurol 474:304–324
Sarthy V, Hoshi H, Mills S, Dudley VJ (2007) Characterization of green fluorescent protein expressing retinal cells in CD44− transgenic mice. Neuroscience 144:1087–1093
Soriano P (1999) Generalized lacZ expression with the ROSA26 Cre reporter strain. Nat Genet 21:70–71
von Engelhardt J, Eliava M, Meyer AH, Rozov A, Monyer H (2007) Functional characterization of intrinsic cholinergic interneurons in the cortex. J Neurosci 27:5633–5642
Vuong HE, Sevilla Müller LP, Hardi CN, McMahon DG, Brecha NC (2015) Heterogeneous transgene expression in the retinas of the TH-RFP, TH-Cre, TH-BAC-Cre and DAT-Cre mouse lines. Neuroscience 307:319–337. doi:10.1016/j.neuroscience.2015.08.060
Wang C-T, Blankenship AG, Anishchenko A, Elstrott J, Fikhman M, Nakanishi S, Feller MB (2007) GABAA receptor-mediated signaling alters the structure of spontaneous activity in the developing retina. J Neurosci 27:9130–9140
Yi F, Ball J, Stoll KE, Satpute VC, Mitchell SM, Pauli JL, Holloway BB, Johnston AD, Nathanson NN, Deisseroth K, Gerber DJ, Tonegawa S, Lawrence JJ (2014) Direct excitation of parvalbumin-positive interneurons by M1 muscarinic acetylcholine receptors: roles in cellular excitability, inhibitory transmission and cognition. J Physiol 592:3463–3494
Yi F, Catudio-Garrett E, Gabriel R, Wilhelm M, Erdelyi F, Szabo G, Deisseroth K, Lawrence JJ (2015) Hippocampal “cholinergic interneurons” visualized with the choline acetyltransferase promoter: anatomical distribution, intrinsic membrane properties, neurochemical characteristics, and capacity for cholinergic modulation. Front Synaptic Neurosci 7:4
Yoshida K, Watanabe D, Ishikane H, Tachibana M, Pastan I, Nakanishi S (2001) Neuron A key role of starburst amacrine cells in originating retinal directional selectivity and optokinetic eye movement. Neuron 30:771–780
Young RW (1985) Cell differentiation in the retina of the mouse. Anat Rec 212:199–205
Zagozewski JL, Zhang Q, Pinto VI, Wigle JT, Eisenstat DD (2014) The role of homeobox genes in retinal development and disease. Dev Biol 393(2):195–208. doi:10.1016/j.ydbio.2014.07.004
Zeilhofer HU, Studler B, Arabadzisz D, Schweizer C, Ahmadi S, Layh B, Bosl MR, Fritschy JM (2005) Glycinergic neurons expressing enhanced green fluorescent protein in bacterial artificial chromosome transgenic mice. J Comp Neurol 482:123–141
Zhang SSM, Xu X, Liu MG, Zhao H, Soares MB, Barnstable CJ, Fu XY (2006) A biphasic pattern of gene expression during mouse retina development. BMC Dev Biol 6:48