Ectomycorrhizal fungal community of naturally regenerated European larch (Larix decidua) seedlings
Tóm tắt
An investigation was undertaken to assess the community structure of ectomycorrhizal (ECM) fungi on naturally regenerating European larch (Larix decidua Mill.) seedlings grown under forest conditions. The sites examined were in two managed monoculture larch forests, differentiated by soil chemistry and mature tree density. Morphological and molecular analyses revealed a total of 22 fungal taxa. From detected ECM fungal taxa, 13 were noted at Site I and 13 at Site II. Only four taxa were found in both sites (Russula ochroleuca, Thelephora terrestris, Lactarius tabidus and Paxillus involutus). The most abundant species at Site I (lower mineral concentration, high tree density) was Hydnotrya tulasnei (25.7 %), followed by Pseudotomentella tristis, Tomentella sublilacina and Russula puelaris. At Site II (higher mineral concentration, low tree density) the dominant fungal symbiont of larch seedlings was clearly Wilcoxina mikolae, which accounted for 74 % of mycorrhizal tips. The less abundant species comprised T. terrestris, L. tabidus, Xerocomus pruinatus and R. ochroleuca. The analysis of similarity (ANOSIM) and non-metric multidimensional scaling (NMDS) ordination clearly separated the ECM fungal assemblages in the two sites tested. Because our study sites were differentiated by many factors, it is not easy to distinguish one factor in particular to explain the differences observed between the ECM communities at Sites I and II. The results obtained significantly increase our knowledge about the diversity of the ECM fungi hosted by L. decidua. The large number of ECM fungi detected was the first observation showing these fungi as symbiotic partners of European larch.
Tài liệu tham khảo
Allen MF (1991) The Ecology of Mycorrhizae. Cambridge University Press, Cambridge
Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389
Bacher M, Zöll M, Peintner U (2010) Ectomycorrhizal status of Larix decidua-, Picea abies- and Pinus cembra-nursery plants in South Tyrol. Forest Observer 5:3–30
Borchers SL, Perry DA (1990) Growth and ectomycorrhiza formation of Douglas-fir seedlings grown in soils collected at different distances form pioneering hardwoods in southwest Oregon clear-cuts. Can J For Res 20:712–721
Bradbury SM, Danielson RM, Visser S (1998) Ectomycorrhizas of regenerating stands of lodgepole pine (Pinus contorta). Can J Bot 76:218–277. doi:10.1139/cjb-76-2-218
Clarke KR, Green RH (1988) Statistical design and analysis for a ‘biological effects’ study. Mar Ecol Prog Ser 46:213–226
Cline ET, Ammirati JF, Edmonds RL (2005) Does proximity to mature trees influence ectomycorrhizal fungus communities of Douglas-fir seedlings? New Phytol 166:993–1009. doi:10.1111/j.1469-8137.2005.01387.x
Collier FA, Bidartondo MI (2009) Waiting for fungi: the ectomycorrhizal invasion of lowland heathlands. J Ecol 97:950–963. doi:10.1111/j.1365-2745.2009.01544.x
Colwell R (2006) EstimateS: Statistical estimation of species richness and shared species from samples, version 8.0. Available at http://purl.oclc.org/estimates.
Dahlberg A, Jonsson L, Nylund JE (1997) Species diversity and distribution of biomass above and below ground among ectomycorrhizal fungi in an old-growth Norway spruce forest in south Sweden. Can J Bot 75:1323–1335. doi:10.1139/b97-844
Danielson RM (1984) Ectomycorrhiza formation by the operculate discomycete Sphaerosporella brunnea (Pezizales). Mycologia 76:454–461
Deacon JW, Donaldson SJ, Last FT (1983) Sequences and interactions of mycorrhizal fungi on birch. Plant Soil 71:257–262. doi:10.1007/BF02182660
Dickie IA, Koide RT, Steiner KC (2002) Influences of established trees on mycorrhizas, nutrition, and growth of Quercus rubra seedlings. Ecol Mon 72:505–521
Dominik T (1950) Modrzew w lasach Czerniejewskich pod Gnieznem i dynamika rozwojowa jego mykorhizy (in Polish with English abstract). Acta Soc Bot Pol 20:305–330
Egli S, Peter M, Falcato S (2002) Dynamics of ectomycorrhizal fungi after windthrow. For Snow Landsc Res 77:81–88
Gardes M, Bruns TD (1996) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: above- and below-ground views. Can J Bot 74:1572–1583. doi:10.1139/b96-190
Hammer O, Harper DAT, Ryan PD (2001) PAST: Palaeontological statistics software package for education and data analysis. Palaeont Electron 4(1):9. http://palaeo-electronica.org/2001_1/past/issue1_01.htm
Harley JL, Harley EL (1987) A check-list of mycorrhiza in the British flora. New Phytol 105(s1):1–102. doi:10.1111/j.1469-8137.1987.tb00674.x
Harley JL, Smith SE (1983) Mycorrhizal symbiosis. Academic, New York, NY
Heinonsalo J (2004) The effects of forestry practices on ectomycorrhizal fungal communities and seedling establishment. Integrated studies on biodiversity, podzol profile, clear-cut logging impacts and seedling inoculation. Dissertation, University of Helsinki, Helsinki, Finland
Henrion B, Di Battista C, Bouchard D, Vairelles D, Thompson BD, Le Tacon F, Martin F (1994) Monitoring the persistence of Laccaria bicolor as an ectomycorrhizal symbiont of nursery-grown Douglas fir by PCR of the rDNA intergenic spacer. Mol Ecol 3:571–580. doi:10.1111/j.1365-294X.1994.tb00088.x
Horton TR, Bruns TD (1998) Multiple-host fungi are the most frequent and abundant ectomycorrhizal types in a mixed stand of Douglas fir (Pseudotsuga menziesii) and bishop pine (Pinus muricata). New Phytol 139:331–339. doi:10.1046/j.1469-8137.1998.00185
Horton TR, Bruns TD (2001) The molecular revolution in ectomycorrhizal ecology: peeking into the black box. Mol Ecol 10:1855–1871. doi:10.1046/j.0962-1083.2001.01333.x
Horton TR, Bruns TD, Parker VT (1999) Ectomycorrhizal fungi associated with Arctostaphylos contribute to Pseudotsuga menziesii establishment. Can J Bot 77:93–102. doi:10.1139/cjb-77-1-93
Iwański M, Rudawska M, Leski T (2006) Mycorrhizal associations of nursery grown Scots pine (Pinus sylvestris L.) seedlings in Poland. Ann For Sci 63:715–723. doi:10.1051/forest:2006052
Jonsson L, Dahlberg A, Nilsson M-C, Kårén O, Zackrisson O (1999) Continuity of ectomycorrhizal fungi in self-regenerating Pinus sylvestris forests studied by comparing mycobiont diversity on seedlings and mature trees. New Phytol 142:151–162. doi:10.1046/j.1469-8137.1999.00383.x
Kårén O, Hogberg N, Dahlberg A, Jonsson L, Nylund JE (1997) Inter- and intraspecific variation in the ITS region of rDNA of ectomycorrhizal fungi in Fennoscandia as detected by endonuclease analysis. New Phytol 136:313–325. doi:10.1046/j.1469-8137.1997.00742.x
Kennedy PG, Izzo AD, Bruns TD (2003) There is high potential for the formation of common mycorrhizal networks between understorey and canopy trees in a mixed evergreen forest. J Ecol 91:1071–1080. doi:10.1046/j.1365-2745.2003.00829.x
Kõljalg U, Dahlberg A, Taylor AFS, Larsson E, Hallenberg N, Stenlid J, Larsson K-H, Fransson PM, Kårén O, Jonsson L (2000) Diversity and abundance of resupinate thelephoroid fungi as ectomycorrhizal symbionts in Swedish boreal forests. Mol Ecol 9:1985–1996. doi:10.1046/j.1365-294X.2000.01105.x
Ławrynowicz M (1988) Flora Polska. Grzyby (Mycota). XVIII. Jeleniakowate (Elaphomycetales). Truflowe (Tuberales) (in Polish). PWN, Warszawa-Kraków
Leski T, Rudawska M, Aučina A (2008) The ectomycorrhizal status of European larch (Larix decidua Mill.) seedlings from bareroot forest nurseries. For Ecol Manag 256:2136–2144. doi:10.1016/j.foreco.2008.08.004
Lilleskov EA, Fahey TJ, Horton TR, Lovett GM (2002) Belowground ectomycorrhizal fungal community change over a nitrogen deposition gradient in Alaska. Ecology 83:104–115. doi:10.1890/0012-9658(2002)083[0104:BEFCCO]2.0.CO;2
Ma D, Yang G, Mu L (2010) Morphological and molecular analyses of ectomycorrhizal diversity in Pinus densiflora seedlings. Symbiosis 51:233–238. doi:10.1007/s13199-010-0079-x
McGuire KL (2007) Common ectomycorrhizal networks may maintain monodominance in a tropical rain forest. Ecology 88:567–574. doi:10.1890/05-1173
Meyer FH (1973) Distribution of ectomycorrhizae in native and man-made forests. In: Marks GC, Kozlowski TT (eds) ectomycorrhizae. Academic, New York, pp 79–102
Nara K (2006a) Ectomycorrhizal networks and seedling establishment during early primary succession. New Phytol 169:169–178. doi:10.1111/j.1469-8137.2005.01545.x
Nara K (2006b) Pioneer dwarf willow may facilitate tree succession by providing late colonizers with compatible ectomycorrhizal fungi in a primary successional volcanic desert. New Phytol 171:187–197. doi:10.1111/j.1469-8137.2006.01744.x
Nara K, Hogetsu T (2004) Ectomycorrhizal fungi on established shrubs facilitate subsequent seedling establishment of successional plant species. Ecology 85:1700–1707. doi:10.1890/03-0373
Nieto MP, Carbone SS (2009) Characterization of juvenile maritime pine (Pinus pinaster Ait.) ectomycorrhizal fungal community using morphotyping, direct sequencing and fruitbodies sampling. Mycorrhiza 19:91–98. doi:10.1007/s00572-008-0207-0
Nilsson RH, Abarenkov K, Veldre V, Nylinder S, De P, Alfredsson JF, Ryberg M, Brosche S (2010) An open source chimera checker for the fungal ITS region. Mol Ecol 10:1076–1081. doi:10.1111/j.1755-0998.2010.02850.x
Obase K, Tamai Y, Yajima T, Miyamoto T (2007) Mycorrhizal associations in woody plant species at the Mt. Usu volcano, Japan. Mycorrhiza 17:209–215. doi:10.1007/s00572-006-0097-y
Obase K, Cha JY, Lee JK, Lee SY, Lee JH, Chun KW (2009) Ectomycorrhizal fungal communities associated with Pinus thunbergii in the eastern coastal pine forests of Korea. Mycorrhiza 20:39–49. doi:10.1007/s00572-009-0262-1
Obase K, Cha JY, Lee JK, Lee SY, Chun KW (2011) Ectomycorrhizal fungal community associated with naturally regenerating Pinus densiflora Sieb. et Zucc. seedlings on exposed granite slopes along woodland paths. J For Res. doi:10.1007/s10310-011-0301-6
Pachlewski R (1953) Badania mykotrofizmu siewek modrzewia polskiego i sudeckiego w naturalnych warunkach rozwoju (in Polish with English summary). Acta Soc Bot Pol 22:133–168
Pešková V, Soukup F, Landa J (2009) Comparison of mycobiota of diverse aged spruce stands on former agricultural soil. J For Sci 55:452–460
Peter M, Ayer F, Egli S (2001) Nitrogen addition in a Norway spruce stand altered macromycete sporocarp production and belowground ectomycorrhizal species composition. New Phytol 149:311–325. doi:10.1046/j.1469-8137.2001.00030.x
Rineau F, Maurice J-P, Nys C, Voiry H, Garbaye J (2010) Forest liming durably impact the communities of ectomycorrhizas and fungal epigeous fruiting bodies. Ann For Sci 67:110. doi:10.1051/forest/2009089
Rudawska M, Leski T, Gornowicz R (2001) Mycorrhizal status of Pinus sylvestris L. nursery stock in Poland as influenced by nitrogen fertilization. Dendrobiology 46:49–58
Rudawska M, Leski T, Trocha LK, Gornowicz R (2006) Ectomycorrhizal status of Norway spruce seedlings from bare-root forest nurseries. For Ecol Manag 236:375–384. doi:10.1016/j.foreco.2006.09.066
Simard SW, Perry DA, Smith JE, Molina R (1997) Effects of soil trenching on occurrence of ectomycorrhizae on Pseudotsuga menziesii seedlings grown in mature forests of Betula papyrifera and Pseudotsuga menziesii. New Phytol 136:327–340. doi:10.1046/j.1469-8137.1997.00731.x
Stielow B, Bubner B, Hensel G, Münzenberger B, Hoffmann P, Klenk HP, Göker M (2010) The neglected hypogeous fungus Hydnotrya bailii Soehner (1959) is a widespread sister taxon of Hydnotrya tulasnei (Berk.) Berk. & Broome (1846). Mycol Prog 9:195–203. doi:10.1007/s11557-009-0625-1
Taylor DL, Bruns TD (1999) Community structure of ectomycorrhizal fungi in a Pinus muricata forest: minimal overlap between the mature forest and resistant propagules communities. Mol Ecol 8:1837–1850. doi:10.1046/j.1365-294X.1999.00773.x
Tedersoo L, Hansen K, Perry BA, Kjoller R (2006) Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytol 170:581–596. doi:10.1111/j.1469-8137.2006.01678.x
Teste FP, Simard SW (2008) Mycorrhizal networks and distance from mature trees alter patterns of competition and facilitation in dry Douglas-fir forests. Oecologia 158:193–203. doi:10.1007/s00442-008-1136-5
Teste FP, Simard SW, Durall DM (2009) Role of mycorrhizal networks and tree proximity in ectomycorrhizal colonization of planted seedlings. Fun Ecol 2:21–30. doi:10.1016/j.funeco.2008.11.003
Trappe JM (1962) Fungus associates of ectotrophic mycorrhizae. Bot Rev 28:538–606. doi:10.1007/BF02868758
Trocha LK, Rudawska M, Leski T, Dabert M (2006) Genetic diversity of naturally established ectomycorrhizal fungi on Norway spruce seedlings under nursery conditions. Microb Ecol 52:418–425. doi:10.1007/s00248-006-9110-4
Twieg BD, Durall DM, Simard SW, Jones MD (2009) Influence of soil nutrients on ectomycorrhizal communities in a chronosequence of mixed temperate forests. Mycorrhiza 19(5):305–316. doi:10.1007/s00572-009-0232-7
Visser S (1995) Ectomycorrhizal fungal succession in jack pine stands following wildfire. New Phytol 129:389–401. doi:10.1111/j.1469-8137.1995.tb04309.x
Yang G, Cha JY, Shibuya M, Yajima T, Takahashi K (1998) The occurrence and diversity of ectomycorrhizas of Larix kaempferi seedlings on a volcanic mountain in Japan. Mycol Res 102:1503–1508
Yu TE, Egger KN, Peterson LR (2001) Ectendomycorrhizal associations––characteristics and functions. Mycorrhiza 11:167–177. doi:10.1007/s005720100110
Zhou Z, Hogetsu T (2002) Subterranean community structure of ectomycorrhizal fungi under Suillus grevillei sporocarps in a Larix kaempferi forest. New Phytol 114:179–539. doi:10.1046/j.1469-8137.2002.00395.x