Ecosystem health as measured from the molecular to the community level of organization, with reference to sediment bioassessment
Tóm tắt
The current recognition that chemical measurements are uncertain indicators of biological consequences of pollution has shifted the emphasis away from assessing environmental chemistry alone toward the inclusion of measurements of the health of organisms. Effects of pollutants begin with the individual, have subsequent repercussions on population level processes, and ramifications for community structure and functions. Pollutants act at a molecular level and the biochemical lesions is the first step in the manifestation of effects. Technologies that operate at the cellular level assist in elucidating toxicity. Higher levels of integration include an organism's capacity for growth. Laboratory bioassays andin situ research can monitor physiological incapacities and assist in predicting population level effects. A yet higher level of organization is that of the ecological community.
Tài liệu tham khảo
Andersen, J. T. & E., Baatrup, 1988. Ultrastructural localization of mercury accumulations in the gills, hepatopancreas, midgut, and antennal glands of the brown shrimp,Crangon crangon. Aquat. Toxicol. 13: 309–324.
Andersson, T., L., Forlin, J., Hardig & A., Larsson, 1988. Physiological disturbances in fish living in coastal water polluted with bleached kraft pulp mill effluents. Can. J. Fish. Aquat. Sci. 45: 1525–1536.
Aoki, Y., K. T., Suzuki & K., Kubota, 1984. Accumulation of cadmium and induction of its binding protein in the digestive tract of the fleshfly (Sarcophaga peregrina) larvae. Comp. Biochem. Physiol. 77C: 279–282.
Bahnick, D. A., W. A. Swenson, T. P. Markee, D. J. Call & C. A. Anderson, 1981. Development of bioassay procedures for defining pollution of harbor sediments. Part 1. U.S. Environ. Protect. Agency, EPA-600/3-81-025.
Bayne, B. L., M. N., Moore, J., Widdows, D. R., Livingstone & P., Salkeld, 1979. Measurement of the responses of individuals to environmental stress and pollution: Studies with bivalve molluscs. Phil. Trans. Roy. Soc. London B 286: 563–581.
Borgmann, U. & M., Munawar, 1989. A new standardized sediment bioassay protocol using the amphipodHyalella azteca (Saussure). In: M., Munawar, G., Dixon, C. I., Mayfield, T., Reynoldson & M. H., Sadar (eds),Environmental Bioassay Techniques and their Application. Developments in Hydrobiology 54, pp. 425–531, Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.
Borgmann, U., K. M., Ralph & W. P., Norwood, 1989. Toxicity test procedures forHyalella azteca and chronic toxicity of cadmium and pentachlorophenol toH. azteca, Gammarus fasciatus andDaphnia magna. Arch. Environ. Contam. Toxicol. 18: 756–764.
Brady & Sternberg, 1967. Studies onin vivo cholinesterase inhibition and poisoning symptoms in houseflies. J. Insect. Physiol. 13: 369–379.
Brown, B. E., 1982. The form and function of metal-containing “granules” in invertebrate tissues. Biol. Rev. 57: 621–672.
Cairns, M. A., A. V., Nebeker, J. H., Gakstatter & W. L., Griffis, 1984. Toxicity of copper-spiked sediments to fresh-water invertebrates. Environ. Toxicol. Chem. 3: 435–446.
Chapman, P. M. 1986, Sediment quality criteria from the sediment quality triad: an example. Environ. Toxicol. Chem. 5: 957–964.
Dallinger, R. & W., Wieser, 1984. Molecular fractionation of zinc, copper, cadmium, and lead in the midgut gland ofHelix pomatia L. Comp. Biochem. Physiol. 79C: 117–124.
Dawson, D. A., E. F., Stebler, S. L., Burks & J. A., Bantle, 1988. Evaluation of the development toxicity of metal-contaminated sediment using short-term fathead minnow and frog embryo-larval assays. Environ. Toxicol. Chem. 7: 27–34.
Day, K. E. & I. M., Scott, 1990. Use of acetylcholinesterase activity to detect sublethal toxicity in stream invertebrates exposed to low concentrations of organophosphate insecticides. Aquat. Toxicol. 18: 101–114.
Day, K. E., J. L., Metcalfe & S. P., Batchelor, 1990. Changes in intracellular free amino acids in tissues of the caged mussel,Elliptio complanata, exposed to contaminated environments. Arch. Environ. Contam. Toxicol. 19: 816–827.
Dermott, R. & M., Munawar, 1992. A simple and sensitive assay for evaluation of sediment toxicity usingLumbriculus variegatus (Müller). In: B. T., Hart & P. G., Sly (eds),Sediment/Water Interactions V. Developments in Hydrobiology 75, pp. 407–414. Kluwer Academic Publishers, Dordrecht, Reprinted from Hydrobiologia 235/236.
Detra, R. L. & W. J., Collins, 1991. Relationship of parathion concentration, exposure time, cholinesterase inhibition and symptoms of toxicity in midge larvae (Chironomidae: Diptera). Environ. Toxicol. Chem. 10: 1089–1095.
Dixon, D. G., P. V. Hodson, J. F. Klaverkamp, K. M. Lloyd, & J. R. Roberts, 1985. The role of biochemical indicators in the assessment of aquatic ecosystem health — their development and validation. Nat. Res. Counc. Can. No. 24371, Ottawa, Ontario.
Doherty, F. G., M. L., Failla & D. C., Cherry, 1987. Identification of a metallothionein-like heavy metal binding protein in the freshwater bivalve,Corbicula fluminea. Comp. Biochem. Physiol. 87C: 113–120.
Everard, L. B. & R., Swain, 1983. Isolation, characterization and induction of metallothionein in the stoneflyEusthenia spectabilis following exposure to cadmium. Comp. Biochem. Physiol. 75C: 275–280.
Fischer, E., M., Lovas & L., Molnar, 1982. The effect of benzimidazole, carbamate and organophosphorus pesticides on the oxygen-dependent nuclear volume alterations in the chloragocyctes ofTubifex tubifex. Environ. Pollut (A) 28: 285–289.
France, R. L., 1984. Comparative tolerance to low pH of three life stages of the crayfishOrconectes virilis. Can. J. Zool. 2360–2363.
Gagnon, J. E. & A. M., Beaton, 1971. Procedures for determining the effects of dredged sediments on biota-benthos viability and sediment selectivity tests. J. Water Pollut. Control Fed. 43: 392–398.
Giesy, J. P. & R. A. Hoke, 1990. Freshwater sediment quality criteria: Toxicity bioassessment. In: R. Baudo, J. P. Giesy & H. Muntau (eds),Sediments: Chemistry and Toxicity of In-Place Pollutants. pp. 265–348. Lewis Publ. Inc.
Giesy, J. P., R. L., Graney, J. L., Newsted, C. J., Rosiu, A., Benda, R. G., KreisJr. & F. J., Horvath, 1988. Comparison of three sediment bioassay methods using Detroit River sediments. Environ. Toxicol. Chem. 7: 483–498.
Gingrich, D., C. F., ShawII, L., Seidman & C., Remsen, 1984. A reductively labile cadmium-binding protein inDaphnia pulicaria. Mar. Environ. Res. 14: 454–455.
Graney, R. L. & J. P., Giesy, 1987. The effect of short-term exposure to pentachlorophenol and osmotic stress on the free amino acid pool of the freshwater amphipodGammarus pseudolimnaeus Bousfield. Arch. Environ. Contam. Toxicol. 16: 167–176.
Graney, R. L. & J. P., Giesy, 1988. Alterations in the oxygen consumption, condition index and concentrations of free amino acids inCorbicula fluminea (Mollusca: Pelecypoda) exposed to sodium dodecyl sulfate. Environ. Toxicol. Chem. 7: 301–315.
Green, T. H., 1979.Sampling Design and Statistical Methods for Environmental Biologists. J. Wiley and Sons, New York. 257 pp.
Haux, C. & L., Forlin, 1988. Biochemical methods for detecting effects of contaminants on fish. Ambio 17: 376–380.
Hemelraad, J., D. A., Holwerda & D. I., Zandee, 1986. Cadmium kinetics in freshwater clams. I. The pattern of cadmium accumulation inAnodonta cygnia. Arch. Environ. Contam. Toxicol. 15: 1–7.
IJC (International Joint Commission), 1988. Procedures for the Assessment of Contaminated Sediment Problems in the Great Lakes. Report of the Sediment Subcommittee and the Assessment Work Group, 140 pp.
Kleinow, K. M., M. J., Melancon & J. J., Lech, 1987. Biotransformation and induction: implications for toxicity, bioaccumulation and monitoring of environmental xenobiotics in fish. Environ. Health Perspect. 71: 105–119.
Krantzberg, G. & D., Boyd, 1992. The biological significance of contaminants in Hamilton Harbour sediment. Environ. Toxicol. Chem. 11 (11): 1525–1538.
Krantzberg, G. & R., Pope, 1989. Development of an acute and chronic sediment bioassay protocol using larval mayflies and juvenile fathead minnows. Proc. 15th Ann. Aquat. Toxicity Workshop, Can. Tech. Rep. Fish. Aquat. Sci. 1714: 2–5.
Krantzberg, G. & P. M., Stokes, 1989. Metal regulation, tolerance, and body burdens in the larvae of the genusChironomus. Can. J. Fish. Aquat. Sci. 46: 389–398.
Krantzberg, G. & P. M., Stokes, 1990. Metal concentrations and tissue distribution in larvae ofChironomus with reference to x-ray microprobe analysis. Arch. Environ. Contam. Toxicol. 19: 84–93.
LeBlanc, G. A. & D. C., Surprenant, 1985. A method of assessing the toxicity of contaminated freshwater sediments. In: R. D., Cardwell, R., Purdy & R. C., Bahner (eds),Aquatic Toxicology and Hazard Assessment: Seventh Symposium, ASTM STP 854, Amer. Soc. Test. Materials, Philadelphia, pp. 269–283.
Legendre, L. & P., Legendre, 1983.Numerical Ecology. Elsevier, New York. 419 pp.
Luoma, S. N., 1983. Bioavailability of trace metals to aquatic organisms—a review. Sci. Total Environ. 28: 1–22.
Marshall, A. T., 1983. X-ray microanalysis of copper and sulphur-containing granules in the fat body cells of homopteran insects. Tissue Cell 15: 311–315.
McCahon, C. P. & D., Pascoe, 1988. Cadmium toxicity to the freshwater amphipodGammarus pulex (L.) during the moult cycle. Freshw. Biol. 19: 197–203.
Metcalfe, C. D. 1989. Tests for predicting carcinogenicity in fish. CRC Crit. Rev. Aquat. Sci. 1: 111–129.
Metcalfe, J. L. 1989. Biological water quality assessment of running waters based on macroinvertebrate communities: History and present status in Europe. Environ. Pollut. 60: 101–139.
Moriarty, F., 1988.Ecotoxicology. Academic Press, New York. 289 pp.
Munawar, M., R. L. Thomas, H. Shear, P. McGee & A. Murdroch, 1984. An overview of sediment-associated contaminants and their bioasessment. Can. Tech. Rep. Fish. Aquat. Sci. 1253.
Munawar, M., I. F., Munawar, C. I., Mayfield & L. H., McCarthy, 1989. Probing ecosystem health: a multidisciplinary and multi-trophic assay strategy. In: M., Munawar, G., Dixon, C. I., Mayfield, T., Reynoldson & M. H., Sadar (eds),Environmental Bioassay Techniques and their Application. Developments in Hydrobiology 54, pp. 93–116. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.
Naylor, C., L., Maltby & P., Callow, 1989. Scope for growth inGammarus pulex, a freshwater benthic detritivore. In: M., Munawar, G., Dixon, C. I., Mayfield, T., Reynoldson & M. H., Sadar (eds),Environmental Bioassay Techniques and their Application. Developments in Hydrobiology 54, pp. 517–523. Kluwer Academic Publishers, Dordrecht. Reprinted from Hydrobiologia 188/189.
Nebeker, A. V., M. A., Cairns, J. H., Gakstater, K. W., Malueg, G. S., Schuytema & D. F., Krawczyk, 1984. Biological methods for determining toxicity of contaminated freshwater sediments to invertebrates. Environ. Toxicol. Chem. 3: 617–630.
NRCC (National Research Council of Canada). 1985. Publ. No. 24371.
Payne, J. F., L. L., Fancey, A. D., Rahimtaula & E. L., Porter, 1987. Review and perspectives on the use of mixed-function oxygenase enzymes in biological monitoring. Comp. Biochem. Physiol. 86C: 223–245.
Persaud, D., R. Jaagumagi and A. Hayton, 1992. Guidelines for the Protection and Management of Aquatic Sediment Quality in Ontario. Report of the Ontario Ministry of the Environment, ISBN 0-7729-9248-7. 26 pp.
Peters, R. A., 1969. The biochemical lesion and its historical development. British Med. Bull. 25: 223–226.
Powlesland, C. & J., George, 1986. Acute and chronic toxicity of nickel to larvae ofChironomus riparis. Environ. Pollut. 42: 47–64.
Prosi, F. & H., Back, 1985. Indicator cells for heavy metal uptake and distribution in organs from selected invertebrate animals. Internat. Conf. Heavy Metals Environ. Athens, Vol. 2: pp. 242–244.
Redpath, K. J., 1985. Growth inhibition and recovery in mussels (Mytilus edulis) exposed to low copper concentrations. J. Mar. Biol. Assoc. UK. 65: 421–431.
Reynoldson, T. B., S. P. Thompson & J. L. Bamsey, 1990. A sediment bioassay using the tubificid oligochaete wormTubifex tubifex. Environ. Toxicol. Chem. in press.
Rodgers, K., J. Vogt, V. Cairns, D. Boyd, L. Simser, C. Selby, H. Lang, T. Murphy & S. Painter, 1989. Remedial Action Plan for Hamilton Harbour. Environmental Conditions and Problem Definition. Burlington, Ontario. 162 pp.
Sandheinrich, M. B. & G. J., Atchison, 1990. Sublethal toxicant effects on fish foraging behaviour: empirical vs. mechanistic approaches. Environ. Toxicol. Chem. 9: 107–119.
Swartz, R. C., W. A., DeBen, J. K. P., Jones, J. O., Lamberson & F. A., Cole, 1985. Phoxocephalid amphipod bioassay for marine sediment toxicity. Aquatic toxicology and hazard assessment. Seventh Symposium, Amer. Soc. Test. Materials, STP 854, pp. 284–307.
Viarengo, A., M., Pertica, G., Mancinelli, S., Palmero, C., Zanicchi & M., Orunesu, 1982. Evaluation of general and specific stress indices in mussels collected from populations subjected to different levels of heavy metal pollution. Mar. Environ. Res. 6: 235–243.
Viarengo, A., M. N., Moore, M., Pertica, G., Mancinelli, G., Zanicchi & R. K., Pipe, 1985. Detoxification of copper in the cells of the digestive gland of mussel: the role of lysosomes and thioneins. Sci. Total Environ. 44: 135–145.
Walton, B. T., T. A., Anderson, M. S., Hendricks & S. S., Talmage, 1989. Physicochemical properties as predictors of organic chemical effects on soil microbial respiration. Environ. Toxicol Chem. 8: 53–63.
Warwick, W. F., 1985. Morphological abnormalities in Chironomidae (Diptera) larvae as measures of toxic stress in freshwater ecosystems: indexing antennal deformities inChironomus Meigen. Can. J. Fish. Aquat. Sci. 42: 1881–1914.
Warwick, W. F., 1990. Morphological abnormalities in Chironomidae (Diptera) larvae from the Lac St. Louis and Laprairie basins of the St. Lawrence River. J. Great Lakes Res. 16: 185–208.
Washington, H. G., 1984. Diversity biotic and similarity indices: A review with species relevant to aquatic ecosystems. Water Res. 18: 653–694.
Weiderholm, T., A. M., Weiderholm & G., Milbrink, 1987. Bulk sediment bioassays with five species of freshwater oligochaetes. Water, Air and Soil Pollut. 36: 131–154.
Williamson, P., 1979. Opposite effects of age and weight on cadmium concentrations of a gastropod mollusc. Ambio 8: 30–31.
Yamamura, M., K. T., Suzuki, S., Hatakeyama & K., Kubota, 1983. Tolerance to cadmium and cadmium-binding proteins induced in the midge larva,Chironomus yoshimatsui (Diptera, Chironomidae). Comp. Biochem. Physiol. 75C: 21–24.