Ecophysiology of the kleptoplastidic dinoflagellate Shimiella gracilenta: I. spatiotemporal distribution in Korean coastal waters and growth and ingestion rates

Algae - Tập 36 Số 4 - Trang 263-283 - 2021
Jin Hee Ok, Hae Jin Jeong, Hee Chang Kang, Sang Ah Park, Se Hee Eom, Ji Hyun You, Sung Yeon Lee

Tóm tắt

To explore the ecophysiological characteristics of the kleptoplastidic dinoflagellate Shimiella gracilenta, we determined its spatiotemporal distribution in Korean coastal waters and growth and ingestion rates as a function of prey concentration. The abundance of S. gracilenta at 28 stations from 2015 to 2018 was measured using quantitative realtime polymerase chain reaction. Cells of S. gracilenta were detected at least once at all the stations and in each season, when temperature and salinity were 1.7–26.4°C and 9.9–35.6, respectively. Moreover, among the 28 potential prey species tested, S. gracilenta SGJH1904 fed on diverse prey taxa. However, the highest abundance of S. gracilenta was only 3 cells mL-1 during the study period. The threshold Teleaulax amphioxeia concentration for S. gracilenta growth was 5,618 cells mL-1, which was much higher than the highest abundance of T. amphioxeia (667 cells mL-1). Thus, T. amphioxeia was not likely to support the growth of S. gracilenta in the field during the study period. However, the maximum specific growth and ingestion rates of S. gracilenta on T. amphioxeia, the optimal prey species, were 1.36 d-1 and 0.04 ng C predator- 1 d-1, respectively. Thus, if the abundance of T. amphioxeia was much higher than 5,618 cells mL-1, the abundance of S. gracilenta could be much higher than the highest abundance observed in this study. Eurythermal and euryhaline characteristics of S. gracilenta and its ability to feed on diverse prey species and conduct kleptoplastidy are likely to be responsible for its common spatiotemporal distribution.

Từ khóa


Tài liệu tham khảo

10.22438/jeb/41/6/mrn-1151

10.1016/j.scitotenv.2020.143861

10.1016/j.hal.2008.02.007

10.1016/j.hal.2007.06.006

10.3354/ame01165

10.1111/j.1550-7408.1993.tb04881.x

10.1016/s0924-7963(96)00081-4

10.2216/i0031-8884-40-3-186.1

Campbell, 1973, The phytoplankton of Gales Creek with emphasis on the taxonomy and ecology of estuarine phytoflagellates, 354

10.1016/0272-7714(83)90103-8

10.1111/j.1550-7408.1999.tb04620.x

10.1016/j.marpolbul.2011.09.022

10.1016/j.hal.2010.09.001

Drira, 2008, Dynamics of dinoflagellates and environmental factors during the summer in the Gulf of Gabes (Tunisia, Eastern Mediterranean Sea), 59

10.2216/0031-8884(2005)44[640

de Sousa, 2020, Biogeography of Arctic Eukaryotic Microbiome: A comparative approach between 18S rRNA gene metabarcoding and microscopic analysis, 94

10.4490/algae.2021.36.2.22

10.7872/crya.v33.iss2.2011.171

10.4319/lo.1972.17.6.0805

10.1111/j.1529-8817.2006.00183.x

10.1111/j.1462-2920.2006.01109.x

10.1093/plankt/fbr031

10.3354/ame01279

10.1016/j.oceano.2018.09.001

10.2216/i0031-8884-32-3-234.1

10.1139/m62-029

10.2216/i0031-8884-32-2-79.1

10.3354/meps069201

10.3354/meps073253

10.1002/lno.10119

10.1073/pnas.1910121116

10.1007/bf00395638

Hernández-Becerril, 2018, Abundance and distribution of the potentially toxic thecate dinoflagellate Alexandrium tamiyavanichii (Dinophyceae) in the Central Mexican Pacific, using the quantitative PCR method, 366

10.3354/meps201121

10.4490/algae.2020.35.2.24

10.1016/j.hal.2016.12.007

10.1111/j.1550-7408.1999.tb04618.x

10.3354/ame044263

10.1111/j.1550-7408.2007.00259.x

10.1126/sciadv.abe4214

10.1111/j.1550-7408.2011.00580.x

10.1016/j.hal.2015.06.004

10.1111/jeu.12083

10.1016/j.hal.2016.10.008

Jeong, 2010a, Ecology of Gymnodinium aureolum. I. Feeding in western Korean waters, 239

10.1111/j.1550-7408.2004.tb00292.x

10.1007/s12601-010-0007-2

10.1007/s00227-021-03881-4

10.1016/j.hal.2013.10.008

10.3354/ame040133

10.3354/ame038249

10.1007/s11120-010-9546-8

Johnson, 2013, Seasonal dynamics of Mesodinium rubrum in Chesapeake Bay, 877

10.4490/algae.2020.35.8.20

10.4490/algae.2019.34.5.25

10.1111/j.1550-7408.2011.00531.x

10.1093/nar/gkm234

10.1016/j.hal.2013.10.010

10.2216/i0031-8884-27-3-366.1

10.2216/i0031-8884-33-1-24.1

10.4490/algae.2019.34.8.28

10.1016/j.hal.2016.09.008

10.4490/algae.2021.36.3.4

10.4490/algae.2019.34.2.28

10.4490/algae.2020.35.8.25

10.3354/ame019163

10.1093/plankt/22.11.2105

10.1016/j.hal.2018.03.009

10.1093/plankt/fbi150

10.1046/j.1529-8817.2003.02112.x

Martin, 2021, Temperate waters: NCM succession and spatial variability in The North Sea revealed by DNA metabarcoding, 21

10.1046/j.1529-8817.2000.99078.x

10.1016/j.jembe.2006.09.013

10.1111/jpy.13067

10.1016/j.hal.2017.08.006

10.1111/jpy.12907

10.3389/fmars.2021.681252

10.1016/j.seares.2013.08.005

Park, 2021, Interactions between the kleptoplastidic dinoflagellate Shimiella gracilenta and several common heterotrophic protists, 738547

10.1016/0272-7714(84)90016-7

10.1093/jxb/erp282

10.1007/978-1-4615-2818-0_5

Schnepf, 1992, Nutritional strategies in dinoflagellates: a review with emphasis on cell biological aspects, 3

Schnepf, 1999, Dinophyte chloroplasts and phylogeny: a review, 81

10.1111/jpy.12240

10.3354/ame015293

10.1111/j.1550-7408.2002.tb00343.x

10.1016/s1385-1101(02)00219-8

10.1073/pnas.0801328105

10.1146/annurev-marine-010816-060617

10.4319/lo.1967.12.3.0411

10.1093/molbev/msm092

10.1007/s10531-007-9258-3

Tillmann, 2002, Dinoflagellate grazing on the raphidophyte Fibrocapsa japonica, 247

10.1038/ismej.2013.132

10.1016/0967-0645(93)90015-f

10.1016/j.hal.2020.101775

10.1111/j.1550-7408.2009.00448.x

10.1016/j.hal.2013.10.009

10.4490/algae.2020.35.2.28

Zhang, 2011, Will harmful dinoflagellate Karenia mikimotoi grow phagotrophically?, 849