Economical Fabrication of Superparamagnetic CoFe2O4 Nanodots@MoS2 Nanosheets with Double PEGylation Using Non-ionic Surfactants with Enhanced Biological Activity
Springer Science and Business Media LLC - Trang 1-12 - 2024
Tóm tắt
In this work, the fabrication of CoFe2O4 nanodots–MoS2 nanosheets with double PEGylation (COMPI) is achieved by cost-effective methods. The preparation techniques were preferred to cost-effectively enhance the properties and biocompatibility of cobalt ferrite and dichalcogenide nanomaterials. Structural and morphological investigations were done using powder XRD, TEM, XPS, and FT-IR techniques. CoFe2O4 nanodots exhibit superparamagnetic behaviour, and the magnetization decreases with the addition of MoS2 nanosheets and when double-coated with PEG-non-ionic surfactants. This material was designed to study anticancer, antioxidant, and antimicrobial efficacy. The anticancer activity of COMPI in MCF-7 adenocarcinoma (breast cancer) and HepG-2 hepatocellular carcinoma (liver cancer) cell lines was evaluated. A strong cytotoxic potential was observed for both MCF-7 and HepG-2 cell lines and negligible hemolytic activity. Antioxidant assay of SOD and H2O2 were assessed as toxicity end-points. Antimicrobial properties against Staphylococcus aureus, Escherichia coli, and Candida albicans showed noteworthy results. This study shows a key to understanding the ferrite nanodots encased in 2D MoS2 nanosheets with PEGylation forming a unique interaction and the strategy for obtaining in vitro efficiency, which provides strong evidence to support the development of cytotoxicity antioxidant, and antimicrobial properties for significant biomedical potential in nanotherapy.
Tài liệu tham khảo
Sanchez, C., Shea, K. J., & Kitagawa, S. (2011). Recent progress in hybrid materials science. Chemical Society Reviews, 40, 471–472. https://doi.org/10.1039/c1cs90001c
Huang, X., Tan, C., Yin, Z., & Zhang, H. (2014). 25th anniversary article: Hybrid nanostructures based on two-dimensional nanomaterials. Advanced Materials, 26, 2185–2204. https://doi.org/10.1002/adma.201304964
Tan, C., & Zhang, H. (2015). Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chemical Society Reviews, 44, 2713–2731. https://doi.org/10.1039/c4cs00182f
Lei, L., Huang, D., Zeng, G., Cheng, M., Jiang, D., Zhou, C., Chen, S., & Wang, W. (2019). A fantastic two-dimensional MoS2 material based on the inert basal planes activation: Electronic structure, synthesis strategies, catalytic active sites, catalytic and electronics properties. Coordination Chemistry Reviews, 399,. https://doi.org/10.1016/j.ccr.2019.213020
Anila, I., Lahiri, B. B., Jacob Mathew, M., & Philip, J. (2022). Synthesis and magneto-structural properties of chitosan coated ultrafine cobalt ferrite nanoparticles for magnetic fluid hyperthermia in viscous medium. Ceramics International, 48, 22767–22781. https://doi.org/10.1016/J.CERAMINT.2022.04.088
Caizer, I. S., & Caizer, C. (2022). Superparamagnetic hyperthermia study with cobalt ferrite nanoparticles covered with γ-cyclodextrins by computer simulation for application in alternative cancer therapy. International Journal of Molecular Sciences, 23,. https://doi.org/10.3390/ijms23084350
Sharifianjazi, F., Moradi, M., Parvin, N., Nemati, A., Jafari Rad, A., Sheysi, N., Abouchenari, A., Mohammadi, A., Karbasi, S., Ahmadi, Z., Esmaeilkhanian, A., Irani, M., Pakseresht, A., Sahmani, S., & ShahediAsl, M. (2020). Magnetic CoFe2O4 nanoparticles doped with metal ions: A review. Ceramics International, 46, 18391–18412. https://doi.org/10.1016/j.ceramint.2020.04.202
Wu, H., Liu, G., Wang, X., Zhang, J., Chen, Y., Shi, J., Yang, H., Hu, H., & Yang, S. (2011). Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomaterialia, 7, 3496–3504. https://doi.org/10.1016/j.actbio.2011.05.031
Yalcin, B., Ozcelik, S., Icin, K., Senturk, K., Ozcelik, B., Arda, L., Arda, L. (2021). Structural, optical, magnetic, photocatalytic activity and related biological effects of CoFe2O4 ferrite nanoparticles Structural, Optical, Magnetic, Photocatalytic Activity and Related Biological Effects of CoFe 2 O 4 Ferrite Nanoparticles. https://doi.org/10.21203/rs.3.rs-164750/v1
Phalswal, P., Khanna, P. K., Rubahn, H. G., & Mishra, Y. K. (2022). Nanostructured molybdenum dichalcogenides: A review. Materials Advances, 3, 5672–5697. https://doi.org/10.1039/d2ma00150k
Zeng, Z., Yin, Z., Huang, X., Li, H., He, Q., Lu, G., Boey, F., & Zhang, H. (2011). Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angewandte Chemie, 123, 11289–11293. https://doi.org/10.1002/ange.201106004
Mo, C., Wang, Z., Yang, J., Ouyang, Y., Mo, Q., Li, S., He, P., Chen, L., & Li, X. (2022). Rational assembly of RGD/MoS2/Doxorubicin nanodrug for targeted drug delivery, GSH-stimulus release and chemo-photothermal synergistic antitumor activity. Journal of Photochemistry and Photobiology B: Biology, 233, 112487. https://doi.org/10.1016/J.JPHOTOBIOL.2022.112487
Pourmadadi, M., Tajiki, A., Hosseini, S. M., Samadi, A., Abdouss, M., Daneshnia, S., & Yazdian, F. (2022). A comprehensive review of synthesis, structure, properties, and functionalization of MoS2; emphasis on drug delivery, photothermal therapy, and tissue engineering applications. Journal of Drug Delivery Science and Technology, 76, 103767. https://doi.org/10.1016/J.JDDST.2022.103767
Alavijeh, M. S., Maghsoudpour, A., Khayat, M., Rad, I., & Hatamie, S. (2021). Cobalt ferrite decoration of molybdenum disulfide nanosheets; development of a nanocomposite-mediated hyperthermia method. Journal of Mechanical Science and Technology, 35, 1319–1325. https://doi.org/10.1007/s12206-020-1242-9
Aşik, E., Akpinar, Y., TülinGüray, N., Işcan, M., Demircigil, G. Ç., & Volkan, M. (2016). Cellular uptake, genotoxicity and cytotoxicity of cobalt ferrite magnetic nanoparticles in human breast cells. Toxicology Research (Camb), 5, 1649–1662. https://doi.org/10.1039/c6tx00211k
Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V., & Kis, A. (2017). 2D transition metal dichalcogenides. Nature Reviews Materials, 2,. https://doi.org/10.1038/natrevmats.2017.33
Ansari, S. M., Bhor, R. D., Pai, K. R., Mazumder, S., Sen, D., Kolekar, Y. D., & Ramana, C. V. (2016). Size and chemistry controlled cobalt-ferrite nanoparticles and their anti-proliferative effect against the MCF-7 breast cancer cells. ACS Biomaterials Science & Engineering, 2, 2139–2152. https://doi.org/10.1021/acsbiomaterials.6b00333
Georgiadou, V., Kokotidou, C., le Droumaguet, B., Carbonnier, B., Choli-Papadopoulou, T., & Dendrinou-Samara, C. (2014). Oleylamine as a beneficial agent for the synthesis of CoFe2O4 nanoparticles with potential biomedical uses. Dalton Transactions, 43, 6377–6388. https://doi.org/10.1039/C3DT53179A
Wang, J., Li, Z., Yin, Y., Liu, H., Tang, G., Ma, Y., Feng, X., Mei, H., Bi, J., Wang, K., & Chen, Z. (2020). Mesoporous silica nanoparticles combined with MoS2 and FITC for fluorescence imaging and photothermal therapy of cancer cells. Journal of Materials Science, 55, 15263–15274. https://doi.org/10.1007/s10853-020-04950-7
Malagrino, T. R. S., Godoy, A. P., Barbosa, J. M., Lima, A. G. T., Sousa, N. C. O., Pedrotti, J. J., Garcia, P. S., Paniago, R. M., Andrade, L. M., Domingues, S. H., Silva, W. M., Ribeiro, H., & Taha-Tijerina, J. (2022). Multifunctional hybrid MoS2-PEGylated/Au nanostructures with potential theranostic applications in biomedicine. Nanomaterials, 12,. https://doi.org/10.3390/nano12122053
Perez De Berti, I. O., Cagnoli, M. V., Pecchi, G., Alessandrini, J. L., Stewart, S. J., Bengoa, J. F., & Marchetti, S. G. (2013). Alternative low-cost approach to the synthesis of magnetic iron oxide nanoparticles by thermal decomposition of organic precursors. Nanotechnology, 24, 175601. https://doi.org/10.1088/0957-4484/24/17/175601
Liu, T., Shi, S., Liang, C., Shen, S., Cheng, L., Wang, C., Song, X., Goel, S., Barnhart, T. E., Cai, W., & Liu, Z. (2015). Iron oxide decorated MoS2 nanosheets with double PEGylation for chelator-free radiolabeling and multimodal imaging guided photothermal therapy. ACS Nano, 9, 950–960. https://doi.org/10.1021/nn506757x
Sahoo, D., Kumar, B., Sinha, J., Ghosh, S., Roy, S. S., & Kaviraj, B. (2020). Cost effective liquid phase exfoliation of MoS2 nanosheets and photocatalytic activity for wastewater treatment enforced by visible light. Scientific Reports, 10,. https://doi.org/10.1038/s41598-020-67683-2
Acar, H.Y.C., Garaas, R.S., Syud, F., Bonitatebus, P., Kulkarni, A.M. (2005). Superparamagnetic nanoparticles stabilized by polymerized PEGylated coatings, In: Journal of Magnetism and Magnetic Materials pp. 1–7. https://doi.org/10.1016/j.jmmm.2005.01.035.
Holder, C. F., & Schaak, R. E. (2019). Tutorial on powder X-ray diffraction for characterizing nanoscale materials. ACS Nano, 13, 7359–7365. https://doi.org/10.1021/acsnano.9b05157
Djamil, J., Segler, S. A., Dabrowski, A., Bensch, W., Lotnyk, A., Schürmann, U., Kienle, L., Hansen, S., & Beweries, T. (2013). The influence of carbon content on the structure and properties of MoS xCy photocatalysts for light-driven hydrogen generation. Dalton Transactions, 42, 1287–1292. https://doi.org/10.1039/c2dt31967e
Dai, J., Dong, X., Wang, Q., Lou, X., Xia, F., & Wang, S. (2021). PEG-polymer encapsulated aggregation-induced emission nanoparticles for tumor theranostics. Advanced Healthcare Materials, 10,. https://doi.org/10.1002/adhm.202101036
Covaliu, C. I., Jitaru, I., Paraschiv, G., Vasile, E., Biriş, S. Ş, Diamandescu, L., Ionita, V., & Iovu, H. (2013). Core-shell hybrid nanomaterials based on CoFe2O4 particles coated with PVP or PEG biopolymers for applications in biomedicine. Powder Technology, 237, 415–426. https://doi.org/10.1016/j.powtec.2012.12.037
Lalithambika, K. C., Shanmugapriya, K., & Sriram, S. (2019). Photocatalytic activity of MoS2 nanoparticles: An experimental and DFT analysis. Applied Physics A Materials Science & Processing, 125,. https://doi.org/10.1007/s00339-019-3120-9
Nakagomi, F., da Silva, S.W., Garg, V.K., Oliveira, A.C., Morais, P.C., Franco Júnior, A., Lima, E.C.D. (2007). The influence of cobalt population on the structural properties of Cox Fe3-x O4, In: Journal of Applied Physics. https://doi.org/10.1063/1.2712821
Gopalan, E. V., Joy, P. A., Al-Omari, I. A., Kumar, D. S., Yoshida, Y., & Anantharaman, M. R. (2009). On the structural, magnetic and electrical properties of sol-gel derived nanosized cobalt ferrite. Journal of Alloys and Compounds, 485, 711–717. https://doi.org/10.1016/j.jallcom.2009.06.033
Jeyavani, V., Pawar, S., Dadwal, A., Joy, P. A., & Mukherjee, S. P. (2019). Size-controlled cobalt ferrite nanocrystals: Magnetically separable reusable nanocatalysts for selective oxidation of styrene. ChemistrySelect, 4, 6524–6531. https://doi.org/10.1002/slct.201900714
Sun, Q. C., Birkel, C. S., Cao, J., Tremel, W., & Musfeldt, J. L. (2012). Spectroscopic signature of the superparamagnetic transition and surface spin disorder in CoFe 2O 4 nanoparticles. ACS Nano, 6, 4876–4883. https://doi.org/10.1021/nn301276q
Mourdikoudis, S., Kostopoulou, A., & LaGrow, A. P. (2021). Magnetic nanoparticle composites: Synergistic effects and applications. Advanced Science, 8,. https://doi.org/10.1002/advs.202004951
Alfareed, T. M., Slimani, Y., Almessiere, M. A., Nawaz, M., Khan, F. A., Baykal, A., & Al-Suhaimi, E. A. (2022). Biocompatibility and colorectal anti-cancer activity study of nanosized BaTiO3 coated spinel ferrites. Scientific Reports, 12,. https://doi.org/10.1038/s41598-022-18306-5
Arumugam, A., Din Ibrahim, M., Kntayya, S. B., Ain, N. M., Iori, R., Galletti, S., Ioannides, C., & Razis, A. F. A. (2020). Induction of apoptosis by gluconasturtiin-isothiocyanate (GNST-ITC) in human hepatocarcinoma HepG2 cells and human breast adenocarcinoma MCF-7 cells. Molecules, 25,. https://doi.org/10.3390/molecules25051240
Xia, T., Kovochich, M., Liong, M., Mädler, L., Gilbert, B., Shi, H., Yeh, J. I., Zink, J. I., & Nel, A. E. (2008). Comparison of the mechanism of toxicity of zinc oxide and cerium oxide nanoparticles based on dissolution and oxidative stress properties. ACS Nano, 2, 2121–2134. https://doi.org/10.1021/nn800511k
AshaRani, P. V., Mun, G. L. K., Hande, M. P., & Valiyaveettil, S. (2009). Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano, 3, 279–290. https://doi.org/10.1021/nn800596w
Srinivas, A., Rao, P. J., Selvam, G., Murthy, P. B., & Reddy, P. N. (2011). Acute inhalation toxicity of cerium oxide nanoparticles in rats. Toxicology Letters, 205, 105–115. https://doi.org/10.1016/j.toxlet.2011.05.1027
Wu, L., Wan, G., Hu, N., He, Z., Shi, S., Suo, Y., Wang, K., Xu, X., Tang, Y., & Wang, G. (2018). Synthesis of porous CoFe2O4 and its application as a peroxidase mimetic for colorimetric detection of H2O2 and organic pollutant degradation. Nanomaterials, 8,. https://doi.org/10.3390/nano8070451
Hathout, A. S., Aljawish, A., Sabry, B. A., El-Nekeety, A. A., Roby, M. H., Deraz, N. M., Aly, S. E., & Abdel-Wahhab, M. A. (2017). Synthesis and characterization of cobalt ferrites nanoparticles with cytotoxic and antimicrobial properties. Journal of Applied Pharmaceutical Science, 7, 86–92. https://doi.org/10.7324/JAPS.2017.70111
Abdel Maksoud, M. I. A., El-Sayyad, G. S., Mamdouh, N., & El Rouby, W. M. A. (2022). Gamma-rays induced synthesis of Ag-decorated ZnCo2O4–MoS2 heterostructure as novel photocatalyst and effective antimicrobial agent for wastewater treatment application. Journal of Inorganic and Organometallic Polymers and Materials, 32, 3621–3639. https://doi.org/10.1007/s10904-022-02387-w