Economic and environmental sustainability of liquid hydrogen fuel for hypersonic transportation systems
Tóm tắt
Từ khóa
Tài liệu tham khảo
Contreras, A., et al.: Hydrogen as aviation fuel: a comparison with hydrocarbon fuels. Int. J. Hydrogen Energy 22(10-11), 1053–1060 (1997)
Witcofski, R.: Comparison of alternative fuel for aircraft. NASA-TM-80155 (1979) https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790024466.pdf
Margaretic, P., Steelant, J.: Economical assessment of commerical high-speed transport. CEAS Aeronaut. J. (2018). https://doi.org/10.1007/s13272-018-0319-y
Steelant, J.: Achievements obtained on Aero-Thermal Loaded Materials for High-Speed Atmospheric Vehicles within ATLLAS. In: 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, AIAA-2009-7225, 19–22 October 2009
Steelant, J., Dalenbring, M., Kuhn, M., Bouchez, M., von Wolfersdorf, J.: Achievements obtained within the ATLLAS-II Project on Aero-Thermal Loaded Material Investigations for High-Speed Vehicles. In: 21st Int. Space Planes and Hypersonic Systems and Technology Conference, Xiamen, AIAA-2017-2393, 6–9 March 2017
Steelant, J.: Achievements Obtained for Sustained Hypersonic Flight within the LAPCAT project. In: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, AIAA-2008-2578, 28 April–1 May 2008
Steelant, J., Varvill, R., Walton, C., Defoort, S., Hannemann, K., Marini, M.: Achievements Obtained for Sustained Hypersonic Flight within the LAPCAT-II project. In: 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference AIAA, Glasgow, AIAA-2015-3677, 6–9 July 2015
Steelant, J.: Evolutionary technology developments towards an international flight platform for high-speed transportation, aviation in Europe innovating for growth. In: Knörzer, D., et al. (eds.) Proceedings of the 7th European Aeronautics Days, London, 20–22 Oct 2015. https://doi.org/10.2777/62810
Fusaro, R., Viola, N., Ferretto, D., et al.: Life cycle cost estimation for high-speed transportation systems. CEAS Space J (2019). https://doi.org/10.1007/s12567-019-00291-7
Koelle, D.E.: Handbook of Cost Engineering and Design of Space Transportation Systems. Revision 4b. (2013)
Léon, A., ed. Hydrogen technology: mobile and portable applications. Springer Science & Business Media (2008)
Schoots, K., et al.: Learning curves for hydrogen production technology: an assessment of observed cost reductions. Int. J. Hydrogen Energy 33(11), 2630–2645 (2008)
Adolf, J., Balzer, C.H., Louis, J., Schabla, U., Fischedick, M., Arnold, K., Schüwer, D.: Energy of the future? Sustainable mobility through fuel cells and H2; Shell hydrogen study (2017)
Verstraete, D.: The potential of Liquid Hydrogen for long range aircraft propulsion, chap. 1, pp. 2–10. Ph.D. Thesis (2009). https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/4089/D_Verstraete_Thesis_2009.pdf?sequence=1&isAllowed=y
Pohl, H.-W. (ed.): Hydrogen and other alternative fuels for air and ground transportation. Wiley, Chichester (1995)
Hadaller, O., Daggett, D., Hendricks, R., Walther, R.: Alternative Fuels and Their Potential Impact on Aviation. NASA/TM—2006-214365 (2006) https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060051881.pdf
van Hulst, N.: Hydrogen Envoy at the Ministry of Economic Affairs & Climate Policy of the Netherlands Commentary “The clean hydrogen future has already begun” (2019)
IRENA. Hydrogen from renewable power: technology outlook for the energy transition (2018). https://www.eugcc-cleanergy.net/sites/default/files/1._session_1_dr._asami_miketa_irena.pdf
IRENA, Renewable power generation costs in 2018. International Renewable Energy Agency, Abu Dhabi (2019). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf
Rashid, M.M., et al.: Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 4(3), 2249–8958 (2015)
Ragheb, M.: Economics of wind power generation. Wind Energy Engineering, pp. 537–555. Academic Press (2017)
IEA Database: https://www.iea.org/data-and-statistics/charts/hydrogen-production-costs-using-natural-gas-in-selected-regions-2018-2
Bertuccioli, L., et al.: Study on development of water electrolysis in the EU. Final report. Fuel cells and hydrogen joint undertaking, 160 p (2014)
Capros, P, et al.: EU Reference Scenario 2016-Energy, transport and GHG emissions Trends to 2050 (2016)
Riis, T.: et al.: Hydrogen production and storage—R&D priorities and gaps. In: International Energy Agency-Hydrogen Co-Ordination Group-Hydrogen Implementing Agreement (2006)
Schmidt, O., et al.: Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 42(52), 30470–30492 (2017)
Cardella, U., Decker L., Klein H.: Economically viable large-scale hydrogen liquefaction. In: IOP conference series: materials science and engineering, vol. 171. no. 1. IOP Publishing (2017)
Norwegian Centres of Expertise (NCE): Norwegian Future Value Chains for Liquid Hydrogen, NCE Maritime CleanTech (2019). https://maritimecleantech.no/wp-content/uploads/2016/11/Report-liquid-hydrogen.pdf
Ohlig, K., Decker, L.: The latest developments and outlook for hydrogen liquefaction technology. In: AIP conference proceedings. vol. 1573. no. 1. American Institute of Physics (2014)
Krewitt, W., Schmid, S.: Fuel cell technologies and hydrogen production/distribution options. EU-Project CASCADE Mints Deutsches Zentrum fur Luft-und Raumfahrt, Stuttgart (2005)
Department of Energy (DOE): Hydrogen and fuel program record: Current status off Hydrogen liquefaction cost (2019). https://www.hydrogen.energy.gov/pdfs/19001_hydrogen_liquefaction_costs.pdf
Brewer, G.D.: Hydrogen aircraft technology. CRC Press, Boca Raton (1991)
Schmidt, P., Stiller, C.: Airport Liquid Hydrogen Infrastructure for Aircraft Auxiliary Power Units. In: 18th World Hydrogen Energy Conference (WHEC 2010), Essen (2010)
IRENA: Hydrogen: A Renewable Energy Perspective (2019). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf
Panfilov, M.: Underground and pipeline hydrogen storage. Compendium of Hydrogen Energy, pp. 91–115. Elsevier, Amsterdam (2016)https://doi.org/10.1016/B978-1-78242-362-1.00004-3
DNV, GL.: erkenning waterstofinfrastructuur. DNV-GL, November (2017)
Steelant J.: Sustained Hypersonic Flight in Europe: Technology Drivers for LAPCAT II’. In: 16th AIAA/DLR/DGLR International Space Planes and Hypersonic System Technologies Conference. Bremen, AIAA 2009–7240 (2009)
Repic, E.M., Olson, G.A., Milliken, R.J.: A Methodology for Hypersonic Transport Technology Planning. NASA CR-2286 (1973)
Langener, T., et al.: Layout and design verification of a small scale scramjet combustion chamber. In: 21st International Symposium on Air breathing Engine. ISABE-2013-1655 (2013)
REL: Cost analysis of Configuration A2 vehicle and Scimitar engine. Deliverable. D2.1.4. (2006)