Economic and environmental sustainability of liquid hydrogen fuel for hypersonic transportation systems

CEAS Space Journal - Tập 12 Số 3 - Trang 441-462 - 2020
Roberta Fusaro1, Valeria Vercella1, Davide Ferretto1, Nicole Viola1, Johan Steelant2
1Politecnico di Torino, Turin, Italy
2European Space Agency, ESTEC, Noordwijk, Netherlands

Tóm tắt

Từ khóa


Tài liệu tham khảo

Contreras, A., et al.: Hydrogen as aviation fuel: a comparison with hydrocarbon fuels. Int. J. Hydrogen Energy 22(10-11), 1053–1060 (1997)

Witcofski, R.: Comparison of alternative fuel for aircraft. NASA-TM-80155 (1979) https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/19790024466.pdf

Margaretic, P., Steelant, J.: Economical assessment of commerical high-speed transport. CEAS Aeronaut. J. (2018). https://doi.org/10.1007/s13272-018-0319-y

Steelant, J.: Achievements obtained on Aero-Thermal Loaded Materials for High-Speed Atmospheric Vehicles within ATLLAS. In: 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, AIAA-2009-7225, 19–22 October 2009

Steelant, J., Dalenbring, M., Kuhn, M., Bouchez, M., von Wolfersdorf, J.: Achievements obtained within the ATLLAS-II Project on Aero-Thermal Loaded Material Investigations for High-Speed Vehicles. In: 21st Int. Space Planes and Hypersonic Systems and Technology Conference, Xiamen, AIAA-2017-2393, 6–9 March 2017

Steelant, J.: Achievements Obtained for Sustained Hypersonic Flight within the LAPCAT project. In: 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, AIAA-2008-2578, 28 April–1 May 2008

Steelant, J., Varvill, R., Walton, C., Defoort, S., Hannemann, K., Marini, M.: Achievements Obtained for Sustained Hypersonic Flight within the LAPCAT-II project. In: 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference AIAA, Glasgow, AIAA-2015-3677, 6–9 July 2015

Steelant, J.: Evolutionary technology developments towards an international flight platform for high-speed transportation, aviation in Europe innovating for growth. In: Knörzer, D., et al. (eds.) Proceedings of the 7th European Aeronautics Days, London, 20–22 Oct 2015. https://doi.org/10.2777/62810

Fusaro, R., Viola, N., Ferretto, D., et al.: Life cycle cost estimation for high-speed transportation systems. CEAS Space J (2019). https://doi.org/10.1007/s12567-019-00291-7

Koelle, D.E.: Handbook of Cost Engineering and Design of Space Transportation Systems. Revision 4b. (2013)

Léon, A., ed. Hydrogen technology: mobile and portable applications. Springer Science & Business Media (2008)

Schoots, K., et al.: Learning curves for hydrogen production technology: an assessment of observed cost reductions. Int. J. Hydrogen Energy 33(11), 2630–2645 (2008)

Adolf, J., Balzer, C.H., Louis, J., Schabla, U., Fischedick, M., Arnold, K., Schüwer, D.: Energy of the future? Sustainable mobility through fuel cells and H2; Shell hydrogen study (2017)

Verstraete, D.: The potential of Liquid Hydrogen for long range aircraft propulsion, chap. 1, pp. 2–10. Ph.D. Thesis (2009). https://dspace.lib.cranfield.ac.uk/bitstream/handle/1826/4089/D_Verstraete_Thesis_2009.pdf?sequence=1&isAllowed=y

Pohl, H.-W. (ed.): Hydrogen and other alternative fuels for air and ground transportation. Wiley, Chichester (1995)

Hadaller, O., Daggett, D., Hendricks, R., Walther, R.: Alternative Fuels and Their Potential Impact on Aviation. NASA/TM—2006-214365 (2006) https://ntrs.nasa.gov/archive/nasa/casi.ntrs.nasa.gov/20060051881.pdf

van Hulst, N.: Hydrogen Envoy at the Ministry of Economic Affairs & Climate Policy of the Netherlands Commentary “The clean hydrogen future has already begun” (2019)

IRENA. Hydrogen from renewable power: technology outlook for the energy transition (2018). https://www.eugcc-cleanergy.net/sites/default/files/1._session_1_dr._asami_miketa_irena.pdf

IRENA, Renewable power generation costs in 2018. International Renewable Energy Agency, Abu Dhabi (2019). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/May/IRENA_Renewable-Power-Generations-Costs-in-2018.pdf

Rashid, M.M., et al.: Hydrogen production by water electrolysis: a review of alkaline water electrolysis, PEM water electrolysis and high temperature water electrolysis. Int. J. Eng. Adv. Technol. 4(3), 2249–8958 (2015)

Ragheb, M.: Economics of wind power generation. Wind Energy Engineering, pp. 537–555. Academic Press (2017)

IEA Database: https://www.iea.org/data-and-statistics/charts/hydrogen-production-costs-using-natural-gas-in-selected-regions-2018-2

Bertuccioli, L., et al.: Study on development of water electrolysis in the EU. Final report. Fuel cells and hydrogen joint undertaking, 160 p (2014)

Capros, P, et al.: EU Reference Scenario 2016-Energy, transport and GHG emissions Trends to 2050 (2016)

Riis, T.: et al.: Hydrogen production and storage—R&D priorities and gaps. In: International Energy Agency-Hydrogen Co-Ordination Group-Hydrogen Implementing Agreement (2006)

Schmidt, O., et al.: Future cost and performance of water electrolysis: An expert elicitation study. Int. J. Hydrogen Energy 42(52), 30470–30492 (2017)

Cardella, U., Decker L., Klein H.: Economically viable large-scale hydrogen liquefaction. In: IOP conference series: materials science and engineering, vol. 171. no. 1. IOP Publishing (2017)

Norwegian Centres of Expertise (NCE): Norwegian Future Value Chains for Liquid Hydrogen, NCE Maritime CleanTech (2019). https://maritimecleantech.no/wp-content/uploads/2016/11/Report-liquid-hydrogen.pdf

Ohlig, K., Decker, L.: The latest developments and outlook for hydrogen liquefaction technology. In: AIP conference proceedings. vol. 1573. no. 1. American Institute of Physics (2014)

Krewitt, W., Schmid, S.: Fuel cell technologies and hydrogen production/distribution options. EU-Project CASCADE Mints Deutsches Zentrum fur Luft-und Raumfahrt, Stuttgart (2005)

Department of Energy (DOE): Hydrogen and fuel program record: Current status off Hydrogen liquefaction cost (2019). https://www.hydrogen.energy.gov/pdfs/19001_hydrogen_liquefaction_costs.pdf

Brewer, G.D.: Hydrogen aircraft technology. CRC Press, Boca Raton (1991)

Schmidt, P., Stiller, C.: Airport Liquid Hydrogen Infrastructure for Aircraft Auxiliary Power Units. In: 18th World Hydrogen Energy Conference (WHEC 2010), Essen (2010)

IRENA: Hydrogen: A Renewable Energy Perspective (2019). https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2019/Sep/IRENA_Hydrogen_2019.pdf

Panfilov, M.: Underground and pipeline hydrogen storage. Compendium of Hydrogen Energy, pp. 91–115. Elsevier, Amsterdam (2016)https://doi.org/10.1016/B978-1-78242-362-1.00004-3

DNV, GL.: erkenning waterstofinfrastructuur. DNV-GL, November (2017)

Steelant J.: Sustained Hypersonic Flight in Europe: Technology Drivers for LAPCAT II’. In: 16th AIAA/DLR/DGLR International Space Planes and Hypersonic System Technologies Conference. Bremen, AIAA 2009–7240 (2009)

Repic, E.M., Olson, G.A., Milliken, R.J.: A Methodology for Hypersonic Transport Technology Planning. NASA CR-2286 (1973)

Langener, T., et al.: Layout and design verification of a small scale scramjet combustion chamber. In: 21st International Symposium on Air breathing Engine. ISABE-2013-1655 (2013)

REL: Cost analysis of Configuration A2 vehicle and Scimitar engine. Deliverable. D2.1.4. (2006)

Minwoo, L.E.E., Larry, K.B., Wenbin, S.O.N.G.: Analysis of direct operating cost of wide-body passenger aircraft: A parametric study based on Hong Kong. Chin. J. Aeronaut. 32(5), 1222–1243 (2019)