Đánh giá rủi ro sinh thái của các kim loại nặng được chọn trong trầm tích bề mặt của ba cửa sông ở bờ biển Đông Nam Ấn Độ

Springer Science and Business Media LLC - Tập 77 - Trang 1-13 - 2018
S. Venkatramanan1,2,3, S. Y. Chung4, T. Ramkumar5, S. Selvam6
1BK21 Plus Project of the Graduate School of Earth Environmental Hazard System, Pukyong National University, Busan, South Korea
2Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam
3Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam
4Department of Earth and Environmental Sciences, Pukyong National University, Busan, South Korea
5Department of Earth Sciences, Annamalai University, Annamalai Nagar, India
6Department of Geology, V.O. Chidambaram College, Tuticorin, India

Tóm tắt

Nghiên cứu đã điều tra sự phân bố và đánh giá rủi ro sinh thái của các kim loại nặng trong trầm tích bề mặt của cửa sông Vellar, Coleroon và Tirumalairajan. Mười lăm mẫu trầm tích từ năm địa điểm trong mỗi cửa sông đã được thu thập vào tháng 3 năm 2010, và các yếu tố như chất hữu cơ, kích thước hạt và hàm lượng kim loại (Al, Fe, Mn, Zn, Cu và Pb) đã được đặc trưng. Mức trung bình của các kim loại trong ba cửa sông theo thứ tự giảm dần là Al > Fe > Zn > Mn > Cu > Pb (cửa sông Vellar và Coleroon) và Al > Fe > Zn > Cu > Mn > Pb trong trầm tích cửa sông Tirumalairajan. Mô hình nồng độ cho thấy các giá trị trung bình của cửa sông Vellar giàu Al (20,528 μg/g), Fe (16,368 μg/g), Zn (102.7 μg/g), Mn (63.5 μg/g), Cu (47.6 μg/g) và Pb (7.9 μg/g). Nồng độ trầm tích bề mặt của Coleroon và Tirumalairajan cho thấy Al (4813 μg/g), Fe (2734 μg/g), Zn (47.6 μg/g), Mn (34.2 μg/g), Cu (23 μg/g) và Pb (9.2 μg/g) và Al (5348 μg/g), Fe (2257 μg/g), Zn (36 μg/g), Cu (23.5 μg/g), Mn (21.9 μg/g) và Pb (3.7 μg/g), tương ứng. Phân tích tương quan và phân tích cụm hai chiều cho thấy mối quan hệ tốt giữa kích thước hạt và chất hữu cơ với các kim loại. Chỉ số tích lũy địa chất (Igeo) cho thấy các giá trị của Zn (2) và Cu (1) có chút cao hơn ở cửa sông Vellar so với hai cửa sông còn lại. Giá trị yếu tố làm giàu (EF) và chỉ số tải ô nhiễm cho thấy cửa sông Vellar bị ô nhiễm nhiều hơn bởi Zn, Pb và Cu so với cửa sông Coleroon và Tirumalairajan. Nghiên cứu này gợi ý rằng việc đầu vào kim loại nặng vào cửa sông Vellar cần được điều chỉnh trong tương lai gần, đặc biệt liên quan đến Zn, Cu và Pb dựa trên mức tác động ngưỡng và các tiêu chuẩn ảnh hưởng thấp khi so sánh với hai cửa sông còn lại. Kết quả so sánh với ba cửa sông cho thấy đầu vào từ con người hơn là một quá trình tự nhiên như nguồn ô nhiễm. Nghiên cứu này sẽ giúp phát triển các chiến lược kiểm soát ô nhiễm và phục hồi trầm tích cho các môi trường cửa sông và biển.

Từ khóa

#kim loại nặng #trầm tích bề mặt #đánh giá rủi ro sinh thái #ô nhiễm môi trường #cửa sông Ấn Độ

Tài liệu tham khảo

Abrahim GMS, Parker RJ (2008) Assessment of heavy metal enrichment factors and the degree of contamination in marine sediments from Tamaki Estuary, Auckland, New Zealand. Environ Monit Assess 136:227–238 Adamo P, Arienzo M, Imperato M, Naimo D, Nardi G, Stanzione D (2005) Distribution and partition of heavy metals in surface and sub-surface sediments of Naples city port. Chemosphere 61:800–809 Allen HE (1994) Partitioning of toxic metals in natural water-sediment systems. In: De Pinto JV, Lick W, Paul JF (eds) Transport and transformation of contaminants near the sediment water interface. Lewis Publishers, Boca Raton, pp 115–127 Anithamary I, Ramkumar T, Venkatramanan S (2012) Distribution and accumulation of metals in the surface sediments of Coleroon River Estuary, East Coast of India. Bull Environ Contam Toxicol 88:413–417 Bellucci LG, Frignani M, Paolucci D, Ravanelli M (2002) Distribution of heavy metals in sediments of the Venice Lagoon the role of the industrial area. Sci Total Environ 295:35–49 Bryan GW, Langston WJ (1992) Bioavailability, accumulation and effects of heavy metals in sediments with special reference to United Kingdom estuaries: a review. Environ Pollut 76:89–131 Buccolieri A, Buccolieri G, Cardellicchio N, Dellatti A, Dilee A, Maci A (2006) Heavy metals in marine sediments of Taranto gulf, Ionian sea, southern Italy. Mar Chem 99:227–235 Burton E, Phillips I, Hawker D (2004) Trace metals and nutrients in bottom sediments of the southport Broadwater, Australia. Mar Pollut Bull 48:378–384 Carrie J, Sanei H, Goodarzi F, Stern G, Wang F (2007) Characterization of organic matter in surface sediments of the Mackenzie River Basin, Canada. Int J Coal Geol 77:416–423 Christophoridis C, Dedepsidis D, Fytianos K (2009) Occurrence and distribution of selected heavy metals in the surface sediments of Thermaikos Gulf, N. Greece. Assessment using pollution indicators. J Hazard Mater 168:1082–1091 Deely JM, Fergusson JE (1994) Heavy metal and organic matter concentrations and distributions in dated sediments of a small estuary adjacent to a small urban area. Sci Total Environ 153:97–111 Dessai VGD, Nayak GN (2009) Distribution and speciation of selected metals in surface sediments, from the tropical Zuari estuary, central west coast of India. Environ Monit Assess 158:117–137 Feng H, Jiang H, Gao W, Weinstein MP, Zhang Q, Zhang W, Yu L, Yuan D, Tao J (2011) Metal contamination in sediments of the western Bohai Bay and adjacent estuaries, China. J Environ Manag 92:1185–1197 Fishmen M, Friedman L (1985) Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey, Openfile Report, pp 244–585 Forstner U, Salomons W (1980) Trace metal analysis on polluted sediments. Part I: assessment of sources and intensities. Environ Technol Lett 1:494–505 Gonzalez-Macias C, Schifter I, Liuch-Cota DB, Mendez-Rodriguez L, Hernandez-Vazquez S (2006) Distribution, enrichment and accumulation of heavy metals in coastal sediments of Salina Cruz Bay, Mexico. Environ Monit Assess 118:211–230 Harbison P (1986) Mangrove muds—a sink and a source for trace metals. Mar Pollut Bull 17:246–250 Idris AM (2008) Combining multivariate analysis and geochemical approaches for assessing heavy metal level in sediments from Sudanese harbors along the Red Sea coast. Microchem J 90:159–163 Ip CCM, Li XD, Zhang G, Wai OWH, Li YS (2007) Trace metal distribution in sediments of the Pearl River Estuary and the surrounding coastal areas, South China. Environ Pollut 147:311–323 Jayaprakash M, Jonathan MP, Srinivasalu S, Muthuraj S, Ram-Mohan V, Rajeshwara-Rao N (2007) Acid-leachable tracemetals in sediments from an industrialized region (Ennore Creek) of Chennai city, SE coast of India: an approach towards regular monitoring. Estuar Coast Shelf Sci 76:692–703 Jonathan MP, Rammohan V (2003) Heavy metals in sediments of the inner shelf off the Gulf of Mannar, South east coast of India. Mar Pollut Bull 46:258–268 Jones DS, Suter GW, Hull RN (1997) Toxicological benchmarks for screening contaminants of potential concern for effects on sediment-associated biota: 1997 revision, U.S. Department of Energy ES/ER/TM-95/R4 Li X, Wai OWH, LiYS Coles BJ, Ramsay MH, Thornton I (2000) Heavy metal distribution in sediment profiles of the Pearl river estuary, South China. Appl Geochem 15:567–581 Long ER, MacDonald DD, Smith SC, Calder FD (1995) Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. Environ Manag 19:81–97 Long ER, Field LJ, MacDonald DD (1997) Predicting toxicity in marine sediments with numerical sediment quality guidelines. Environ Toxi Chem 17:714–727 Lu S, Wang H, Bai S (2009) Heavy metal contents and magnetic susceptibility of soils along an urban-rural gradient in rapidly growing city of eastern China. Environ Monit Assess 155:91–101 MacDonald DD (1994) Approach to the assessment of sediment quality in Florida coastal waters. DEP, Office of Water Policy, Florida Martin JM, Meybeck M (1979) Elemental mass—balance of material carried by major world rivers. Mar Chem 7:173–206 Mathis BJ, Cummings TF (1973) Selected metals in sediments and biota in Illinois River. J Water Pollut Control Fed 45:1573–1583 Mil-Homens M, Stevens RL, Boer W, Abrantes F, Cato I (2006) Pollution history of heavy metals on the Portuguese shelf using 210 Pb-geochronology. Sci Total Environ 367:466–480 Morillo J, Usero J, Gracia I (2004) Heavy metal distribution in marine sediments from the southwest coast of Spain. Chemosphere 55:431–442 Muller G (1969) Index of geoaccumulation in the sediments of the Rhine River. Geo J 2:108–118 Müller G (1979) Schwermetalle in den Sedimenten des Rheins—Veränderungen seit 1971. Umschau 24:778–783 Muniz P, Danulat E, Yannicelli B, Garcia-Alonso J, Medina G, Bicego MC (2004) Assessment of contamination by heavy metals and petroleum hydrocarbons in sediments of Montevideo Harbour (Uruguay). Environ Int 29:1019–1028 Muthu Raj S, Jayaprakash M (2008) Distribution and enrichment of trace metals in marine sediments of Bay of Bengal, off Ennore, south-east coast of India. Environ Geol 56:207–217 Pekey H (2006) The distribution and sources of heavy metals in Izmit Bay surface sediments affected by a polluted stream. Mar Pollut Bull 52:1197–1208 Prohic E, Kniewald G (1987) Heavy metal distribution in recent sediments of the Krka River estuary-an example of sequential extraction analysis. Mar Chem 22:279–297 Prundeanu IM, Buzgar N (2011) The distribution of heavy metals and As in soils of the Falticeni municipality and its surroundings. Carpath J Earth Environ Sci 6:51–64 Ranjan RK, Ramanathan AL, Singh G, Chidambaram S (2008) Assessment of metal enrichments in tsunamigenic sediments of Pichavaram mangroves, southeast coast of India. Environ Monit Assess 147:389–411 Romano E, Ausili A, Zharova N, Magno MC, Pavoni B, Gabellini M (2004) Marine sediment contamination of an industrial site at Port of Bagnoli, Gulf of Naples, Southern Italy. Environ Pollut Bull 49:487–495 Ruiz F (2001) Trace metals in Estuarine sediments from the Southwestern Spanish Coast. Mar Pollut Bull 42:482–490 Santos IR, Silva-Filho EV, Schaefer CE, Albuquerque-Filho MR, Campos LS (2005) Heavy metal contamination in coastal sediments and soil near the Brazilian Antartic Station, King George Island. Mar Pollut Bull 50:185–194 Selvam S, Venkataramanan S, Singaraja C (2015) A GIS based assessment of water quality pollution indices for heavy metal contamination in Tuticorin corporation, Tamil Nadu, India. Arab J Geosci. https://doi.org/10.1007/s12517-015-1968-3 Selvaraj K, Ram-Mohan V, Szefer P (2004) Evaluation of metal contamination in coastal sediments of the Bay of Bengal, India: geochemical and statistical approaches. Mar Pollut Bull 49:174–185 Singaraja C, Chidambaram S, Srinivasamoorthy K, Anandhan P, Selvam S (2015) A study on assessment of credible sources of heavy metal pollution vulnerability in groundwater of Thoothukudi Districts Tamilnadu India. Expo Health. https://doi.org/10.1007/s12403-015-0162-x Subramanian V (1987) Environmental geochemistry of Indian river basins—a review. J Geol Soc India 29:205–220 Tam NFY, Wong YS (1993) Retention of nutrients and heavy metals in mangrove sediments receiving wastewater of different strengths. Environ Technol 14:719–729 Tam NFY, Wong YS (1995) Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ Pollut 94:283–291 Tam NFY, Wong YS (2000) Spatial variation of heavy metals in surface sediments of Hong Kong mangrove swamps. Environ Pollut 110:195–205 Taylor SR, McLennan SM (1995) The geochemical evolution of the continental crust. Rev Geophys 33:241–265 Tessier A, Campbeil PGC, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–850 Tomlinson DL, Wilson JG, Harris CR, Jeffrey DW (1980) Problems in the assessment of heavy metal levels in estuaries and the formation of a pollution index. Helgol Meeresunters 33:566–575 Valdes J, Vargas G, Siffedine A, Ortlieb L, Guinez M (2005) Distribution and enrichment evaluation of heavy metals in Mejillones Bay (23 S), Northern Chile: geo-chemical and statistical approach. Mar Pollut Bull 50:1558–1568 Veerasingam S, Venkatachalapathy R, Ramkumar T (2012) Heavy metals and ecological risk assessment in marine sediments of Chennai, India. Carpath J Earth Environ Sci 7:111–124 Venkatramanan S, Ramkumar T, Anithamary I (2011) Distribution of grain size, clay mineralogy and organic matter of surface sediments from Tirumalairajanar Estuary, Tamilnadu, east coast of India. Arab J Geosci 6:1371–1380 Venkatramanan S, Ramkumar T, Anithamary I, Jonathan MP (2013) Speciation of selected heavy metals geochemistry in surface sediments from Tirumalairajan river estuary, east coast of India. Environ Monit Assess 185:6563–6578 Venkatramanan S, Ramkumar T, Anithamary I, Vasudevan S (2014) Heavy metal distribution in surface sediments of the Tirumalairajan river estuary and the surrounding coastal area, east coast of India. Arab J Geosci 7:123–130 Venkatramanan S, Chung SY, Ramkumar T, Gnanachandrasamy G, Kim TH (2015a) Evaluation of geochemical behavior and heavy metal distribution of sediments: the case study of Tirumalairajan river estuary, southeast coast of India. Int J Sedim Res 30:28–38 Venkatramanan S, Chung SY, Ramkumar T, Selvam S (2015b) Environmental monitoring and assessment of heavy metals in surface sediments at Coleroon River Estuary in Tamil Nadu, India. Environ Monit Assess 187:505 Wang C, Morrison JR (2014) Phosphorus speciation and changes with depth in the sediment of Lake Illawarra. Environ Earth Sci, New South Wales. https://doi.org/10.1007/s12665-013-2742-z.) Wang C, Wang X, Su R, Liang S, Yang S (2011) No detected toxic concentrations in in situ algal growth inhibition tests—a convenient approach to aquatic ecotoxicology. Ecotoxicol Environ Saf 74:225–229 Wang C, Liang C, Li Y, Li K, Wang X (2015) The spatial distribution of dissolved and particulate heavy metals and their response to land-based inputs and tides in a semi-enclosed industrial embayment: Jiaozhou Bay, China. Environ Sci Pollut Res 22:10480–10495 Wedepohl KH (1995) The composition of the continental crust. Geochim Cosmochim Acta 59:1217–1232 Zhou F, Guo HC, Liu L (2007) Quantitative identification and source apportionment of anthropogenic heavy metals in marine sediment of Hong Kong. Environ Geol 53:295–305