Mô hình sinh thái của loài có nguy cơ tuyệt chủng nghiêm trọng Commiphora wightii (Arn.) Bhandari bằng cách sử dụng các biến sinh khí hậu và phi sinh khí hậu

Ecological Processes - Tập 12 - Trang 1-30 - 2023
Manish Mathur1, Preet Mathur2, Harshit Purohit3
1ICAR-Central Arid Zone Research Institute, Jodhpur, India
2Jodhpur Institute of Engineering and Technology, Jodhpur, India
3Neal Analytics, Pune, India

Tóm tắt

Mục tiêu của nghiên cứu này là khảo sát tác động của bốn biến sinh khí hậu khác nhau (hiện tại, 2050, 2070 và 2090 theo các Con đường Phát triển Kinh tế Xã hội chia sẻ SSP2-4.5) và các biến phi sinh khí hậu (đất, chỉ số đa dạng sinh cảnh, cách sử dụng đất, độ dốc và hướng) đến sự phù hợp của môi trường sống và các kích thước sinh thái của loài thực vật có nguy cơ tuyệt chủng nghiêm trọng Commiphora wightii ở Ấn Độ. Chúng tôi cũng đánh giá cách mà mô hình sinh thái ảnh hưởng đến phạm vi xuất hiện (EOO) và diện tích phân bố (AOO) của loài này. Diện tích dưới đường cong nhận diện hoạt động (AUC) được tạo ra bởi entropy tối đa (Maxent) dưới các khung thời gian sinh khí hậu khác nhau đều lớn hơn 0.94, cho thấy độ chính xác của mô hình rất cao. Các đặc điểm phi sinh khí hậu, ngoại trừ độ dốc và hướng địa hình, đã giảm độ chính xác của mô hình của chúng tôi. Ngoài ra, độ chính xác của Maxent là thấp nhất trong tất cả các kết hợp giữa các biến sinh khí hậu và phi sinh khí hậu (AUC = 0.75 đến 0.78). Với các dự báo sinh khí hậu hiện tại, 2050 và 2070, mô hình của chúng tôi đã chỉ ra tầm quan trọng của các tham số về khả năng cung cấp nước (BC-12 đến BC-19, tức là lượng mưa hàng năm và theo mùa cũng như lượng mưa vào các tháng và quý ẩm ướt, khô hạn và lạnh nhất) đối với sự phù hợp của môi trường sống cho loài này. Tuy nhiên, với dự đoán vào năm 2090, các biến năng lượng như nhiệt độ trung bình trong quý ẩm ướt (BC-8) và sự đồng nhiệt (BC-3) đã được xác định là các yếu tố chi phối. Một lượng muối vượt mức, điều kiện rễ, loại hình sử dụng đất (đồng cỏ), đặc điểm của cộng đồng thực vật và độ dốc cũng được ghi nhận có tác động đến loài này. Thông qua mô hình phân bố của loài này trong cả môi trường sống bản địa (tây Ấn Độ) và môi trường sống ngoại lai (Đông Bắc, miền trung Ấn Độ, cũng như Tây Bắc và Đông Ghat), chúng tôi cũng đã có thể mô phỏng cả niche cơ bản và niche thực tế của nó. Phân tích EOO và AOO của chúng tôi phản ánh khả năng tồn tại của nhiều vùng mới ở Ấn Độ nơi loài này có thể được trồng và phát triển. Theo diện tích tính toán dưới các lớp phù hợp khác nhau, chúng tôi có thể kết luận rằng phân bố sinh khí hậu tiềm năng của C. wightii dưới các lớp tối ưu và vừa sẽ tăng lên dưới tất cả các kịch bản sinh khí hậu trong tương lai (2090 > 2050 ≈ hiện tại), ngoại trừ năm 2070, cho thấy có nhiều môi trường sống phù hợp cho việc nuôi trồng nhân tạo C. wightii và sẽ có sẵn cho các dự báo sinh khí hậu trong tương lai vào năm 2050 và 2090. Các địa điểm dự đoán chỉ ra rằng loài này cũng ưa thích nhiều loại hình địa hình khác ngoài môi trường đá, chẳng hạn như cồn cát, đồng cát, đồng phù sa trẻ, khu vực mặn, v.v. Nghiên cứu của chúng tôi cũng tiết lộ thông tin quan trọng về biến phân bố cộng đồng, đặc biệt là hệ số biến thiên mà, khi kết hợp các biến sinh khí hậu + phi sinh khí hậu, đã che lấp tác động của các yếu tố sinh khí hậu trong tất cả các khoảng thời gian.

Từ khóa


Tài liệu tham khảo

Abolmaali SMR, Tarkesh M, Hossein B (2017) MaxEnt modelling for predicting suitable habitats and identifying the effects of climate change on a threatened species, Daphne mucronata, in central Iran. Ecol Inform 43:116–123. https://doi.org/10.1016/j.ecoinf.2017.10.002 Adhikari D, Reshi DBK, Samant SS, Chettri A, Upadhaya K, Shah MA, Singh PP, Tiwary R, Majumdar K, Pradhan A, Thakur ML, Salam N, Zahoor Z, Mir MH, Kaloo ZA, Barik SK (2018) Inventory and characterization of new populations through ecological niche modelling improve threat assessment. Curr Sci 114(3):519–531 Ahmad R, Khuroo AA, Hamid M, Charles B, Rashid I (2019) Predicting invasion potential and niche dynamics of Parthenium hysterophorus (Congress grass) in India under projected climate change. Biodivers Conserv 28:2319–2344. https://doi.org/10.1007/s10531-019-01775-y Austin MP, van Niel KP (2011) Improving species distribution models for climate change studies: variable selection and scale. J Biogeogr 38:1–8 Barve DM, Mehta AR (1993) Clonal propagation of mature elite trees of Commiphora wightii. Plant Cell Tissue Organ Cult 35(3):237–244. https://doi.org/10.1007/BF00037276 Behera MD, Roy PS (2019) Pattern of distribution of angiosperm plant richness along latitudinal and longitudinal gradients of India. Biodivers Conserv 28:2035–2048. https://doi.org/10.1007/s10531-019-01772-1 Behera MD, Behera SK, Sharma S (2019) Recent advances in biodiversity and climate change studies in India. Biodivers Conserv 28:1943–1951. https://doi.org/10.1007/s10531-019-01781-0 Bhandari MS, Meena RK, Shankhwar R, Shekhar C, Saxena J, Kant R, Pandey VV, Barthwal S, Pandey S, Chandra G, Ginwa HS (2020) Prediction mapping through Maxent modeling paves the way for the conservation of Rhododendron arboreum in Uttarakhand Himalayas. J Indian Soc Remote Sens 48:411–422 Bishoni AK, Kavane A, Sharma A, Geetha KA, Samantaray S, Maiti S (2018) Molecular marker analysis of genetic diversity in relation to reproductive behavior of Commiphora wightii population distributed in Gujarat and Rajasthan states of India. S Afr J Bot 117:141–148 Booth TH (2017) Assessing species climatic requirements beyond the realized niche: some lessons mainly from tree species distribution modelling. Clim Change 145:259–271 Brindavanam NB, Goraya GS, Singh SP, Kumar A, Tiwari A, Sarvepalli BN, Raturi PP (2022) Genetic diversity in Commiphora wightii (Arn.) Bhandari (Guggul): an assessment of populations in conservation sites of kachchh region (Gujarat) of India. Pharmacognosy J 14(4):379–387 Brown JL, Anderson B (2014) Sdmtoolbox: a python–based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods in Ecol Eval 5:694–700 Brown JL, Bennett JR, French CM (2017) Sdmtoolbox 2.0: the next generation python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. PeerJ 5:e4095 Buechling A, Tobalske C (2010) Predictive habitat modeling of rare plant species in Pacific Northwest forests. West J Appl Forest Res 26(2):71–81 Chen Q, Yin Y, Zhao R, Yang Y, Teixeira da Silva JA, Yu X (2020) Incorporating local adaptation into species distribution modeling of Paeonia mairei, an endemic plant to China. Front Plant Sci 10:1717. https://doi.org/10.3389/fpls.2019.01717 Choudhary M, Bano S, Tomar UK (2021) Biannual seed yield, viability and germination in Commiphora wightii (Arnott) Bhandari. Biol Life Sci Forum. https://doi.org/10.3390/IECPS2020-08889 Cihal L, Kalab O (2017) Species distribution models for critically endangered liverworts (Bryophyta) from the Czech Republic: a guide to future survey expeditions. Acta Mus Siles Sci Natur 66:101–110 Coban HO, Orucu OK, Arslan ES (2020) MaxEnt modelling for predicting the current and future potential geographical distribution of Quercus libani Olivier. Sustainability 12:2671. https://doi.org/10.3390/su12072671 Dauby G, Stevart T, Droissart V, Cosiaux A, Deblauwe V, Simo-Droissart M, Sosef MSM, Porter P, George E, Gereau RE, Couvreur TLP (2017) ConR: an R package to assist large-scale multispecies preliminary conservation assessments using distribution data. Ecol Eval 7(24):11291–11303 De Queiroz TF, Baughman C, Baughman O, Gara M, Williams N (2012) Species distribution modeling for conservation of rare, edaphic endemic plants in White River Valley. Nevada Nat Areas J 32(2):149–158 Dixit AM, Rao SVS (2000) Observation on distribution and habitat characteristics of guggul (Commiphora wightii) in the arid region of Kachchh, Gujarat, India. Trop Ecol 41(1):81–88 Elith J, Graham CH, Anderson RP, Dudik M, Ferrier S, Guisan A, Hijmans RJ, Huettmann F, Leathwick JR, Lehmann A, Li J, Lohmann LG, Loiselle BA, Manion G, Moritz C, Nakamura M, Nakazawa Y, Overton JM, Peterson AT, Phillips SJ, Richardson K, Scachetti-Pereira R, Schapire RE, Soberon J, Williams S, Wisz MS, Zimmermann NE (2006) Novel methods improve prediction of species’ distributions from occurrence data. Ecography 29:129–151 Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of MaxEnt for ecologists. Divers Distrib 17:43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x Fischer G, Nachtergaele F, Prieler S, van Velthuizen HT, Verelst L, Wiberg D (2008) Global Agro-ecological Zones Assessment for Agriculture (GAEZ 2008). IIASA, FAO, Luxemburg, Rome Flory AR, Kumar S, Stohlgren TJ, Cryan PM (2012) Environmental conditions associated with bat white nose syndrome mortality in the north-eastern United States. J Appl Ecol 49:680–689 Franklin J (2009) Mapping species distributions: spatial inference and prediction. Cambridge University Press, Cambridge Gaur A, Singhal H, Tomar UK (2017) Asexual morphological differences in male and female plants of Commiphora wightii (Arn.) Bhandari—an endangered medicinal plant. Res Plant Sci 5(2):51–59. https://doi.org/10.12691/plant-5-2-1 Gogol-Prokurat M (2011) Predicting habitat suitability for rare plants at local spatial scales using a species distribution model. Ecol App 21(1):33–47 Goncalves E, Herrera I, Duarte M, Bustamante RO, Lampo M, Velásquez G, Sharma GP, García-Rangel S (2014) Global invasion of Lantana camara: has the climatic niche been conserved across continents? PLoS ONE 9(10):111468 Gonzalez-Moreno P, Diez JM, Richardson DM, Vilà M (2015) Beyond climate: disturbance niche shifts in invasive species. Glob Ecol Biogeogr 24:360–370 Guillera-Arroita G, Lahoz-Monfort JJ, Elith J, Gordon A, Kujala H, Lentini PE, McCarthy MA, Tingley R, Wintle BA (2015) Is my specie distribution model fit for purpose? Matching data and models to applications. Glob Ecol Biogeogr 24(3):276–292 Gupta PK, Shivanna R, Mohan Ram HY (1996) Apomixis and polyembryony in the guggul plant, Commiphora wightii. Ann Bot 78(1):67–72. https://doi.org/10.1006/anbo.1996.0097 Gupta R, Sharma LK, Rajkumar M, Mohammad N, Khan ML (2023) Predicting habitat suitability of Litsea glutinosa: a declining tree species, under the current and future climate change scenarios in India. Landsc Ecol Eng. https://doi.org/10.1007/s11355-023-00537-x Hamid M, Khuroo AA, Charles B, Ahmad R, Singh CP, Arvid NA (2019) Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical tree line species in Himalayas. Biodiver Conserv 28:2345–2370. https://doi.org/10.1007/s10531-018-1641-8 Haque I, Bandopadhyay R, Mukhopadhyay K (2009) Population genetic structure of the endangered and endemic medicinal plant Commiphora wightii. Mol Biol Rep 37:847–854. https://doi.org/10.1007/s11033-009-9661-9 Harish Gupta AK, Phulwaria M, Rai MK, Shekhawat NS (2014) Conservation genetics of endangered medicinal plant Commiphora wightii in India Thar Desert. Gene 535(2):266–272 Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high-resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276 Holscher B (2011) Commiphora Jacq. http://www.plantzafrica.com/plantcd/commiphora.htm—a part of the South African National Biodiversity Institute's plant information website. www.plantzafrica.com. Horandl E, Cosendai AC, Temsch EM (2018) Understanding the geographic distribution of apomictic plants: a case for a pluralistic approach. Plant Ecol Divers 1:309–320 IUCN (2010) Red List of Threatened Species. www.iucnredlist.org/apps/redlist/details/31231 IUCN, Gland, Switzerland IUCN Standards and Petitions Subcommittee (2014) Guidelines for using the IUCN red list categories and criteria THE IUCN RED LIST OF THREATENED SPECIES™ Jain N, Nadgauda RS (2013) Commiphora wightii (Arnott) Bhandari–A natural source of Guggulsterone: facing a high risk of extinction in its natural habitat. Am J Plant Sci 4(6):57–68 Jindal SK, Singh DV, Moharana PC, Waris A (2009) Annual Report of ICAR. Central Arid Zone Research Institute, Jodhpur, Rajasthan, India, P 152 Jindal SK, Singh DV, Moharana PC, Waris A (2010) Annual Report of ICAR. Central Arid Zone Research Institute, Jodhpur, Rajasthan, India, P 155 Wan JZ, Wang CJ, Tan JF, Yu FH (2017) Climatic niche divergence and habitat suitability of eight alien invasive weeds in China under climate change. Ecol Evol 7:1541–1552 Kaky E, Gilbert F (2019) Assessment of the extinction risks of medicinal plants in Egypt under climate change by integrating species distribution models and IUCN Red List criteria. J Arid Environ 170:103988. https://doi.org/10.1016/j.jaridenv.2019.05.016 Kala CP, Dhyani PP, Sajwan BS (2006) Developing the medicinal plants sector in northern India: challenges and opportunities. J Ethnobiol Ethnomed 2:1–15 Kasera PK, Prakash J (2005) Ecology and cultivation practices of guggul (Commiphora wightii): an endangered medicinal plant of the Thar desert in India. In: Majumadar DK, Govil JN, Singh VK, Shar-ma RK, eds Recent Progress in Medicinal Plants, Vol. 9— Plant Bioactive in Traditional Medicine, Stadium Press LLC, Houston, pp 403–423 Kass JM, Vilela B, Aiello-Lammens ME, Muscarella R, Merow C, Anderson RP (2018) Wallace: a flexible platform for reproducible modeling of species niches and distributions built for community expansion. Methods Ecol Evol 9:1151–1156. https://doi.org/10.1111/2041-210X.12945 Kass JM, Meenan SI, Tinoco N, Burneo SF, Anderson RP (2021) Improving area of occupancy estimates for parapatric species using distribution models and support vector machines. Ecol Appl 31(1):1–15 Khan AM, Li Q, Saqib Z, Khan N, Habib T, Khalid N, Majeed M, Tariq A (2022) MaxEnt modelling and impact of climate change on habitat suitability variations of economically important Chilgoza Pine (Pinus gerardiana Wall.) in South Asia. Forests 13:715. https://doi.org/10.3390/f13050715 Kulhari A, Sheorayan A, Kalia S, Chaudhury A, Kalia RK (2012) Problems, progress and future prospects of improvement of Commiphora wightii (Arn.) Bhandari, an endangered herbal magic, through modern biotechnological tools: a review. Genet Resour Crop Eval 59:1223–1254 Kulhari A, Sheorayan A, Singh R, Dhawan AK, Kalia RK (2014) Survey, collection and conservation of Commiphora wightii (Arn.) Bhandari–an important medicinal plants heading towards extinction. Indian For 140(12):1171–1183 Kulloli RN, Mathur M, Kumar S (2016) Dynamics of top-down factors with relation to ecological attributes of an endangered species Commiphora wightii. J Appl Nat Sci 8(3):1556–1564 Kumar S, Kulloli RK (2017) Effect of associated species on distribution of Commiphora wightii in Indian arid zone. Taiwania 62(1):43–49 Kumar S, Mathur M (2014) Impact of invasion by Prosopis juliflora on plant communities in arid grazing lands. Trop Ecol 55(1):33–47 Kumar S, Shanker V (1982) Medicinal plants of Indian desert: Commiphora wightii (Arn.) Bhandari. J Arid Environ 5:1–11 Kumar S, Stohlgren TJ (2009) MaxEnt modelling for predicting suitable habitat for threatened and endangered tree Canacomyrica monticola in New Caledonia. J Ecol Nat Environ 1:94–98 Kumar S, Stohlgren TJ, Chong GW (2006) Spatial heterogeneity influences native and non-native plant species richness. Ecology 87:3186–3199 Lal H, Kasera PK (2010) Status and distribution range of guggal: a critically endangered medicinal plant from the Indian Thar Desert. Sci Cult 76:11–12 Li Y, Li M, Li C, Liu Z (2020) Optimized maxent model predictions of climate change impacts on the suitable distribution of Cunninghamia lanceolata in China. Forests 11:302. https://doi.org/10.3390/f11030302 Ma B, Sun J (2018) Predicting the distribution of Stipa purpurea across the Tibetan Plateau via MaxEnt model. BMC Ecol 18:10. https://doi.org/10.1186/s12898-018-0165-0 Maheshwari DV (2010) Guggul plantation shows good success in Kutch. Find Articles/Business/DNA: Daily News and Analysis, Mumbai Mall RK, Sonkar G, Sharma NK, Singh N (2016). Impacts of climate change on agriculture sector in Madhya Pradesh—an Assessment Report. https://doi.org/10.13140/RG.2.1.3010.0247 Marcer A, Sáez L, Molowny-Horas R, Pons X, Pino J (2013) Using species distribution modelling to disentangle realized versus potential distributions for rare species conservation. Biol Conserv 166:221–230. https://doi.org/10.1016/j.biocon.2013.07.001 Marco P, Villen S, Mendes P, Noberga C, Cortes L, Castro T, Souza R (2018) Vulnerability of cerrado threatened mammals: an integrative landscape and climate modeling approach. Biodiver Conser 29:1637–1658. https://doi.org/10.1007/s10531-018-1615-x Mathur M (2014a) Does adaptive strategy for delayed seed dispersal affect extinction probability of a desert species? An assessment using the population viability analysis and glass house experiment. Brazil Arc Biol Techno 57(5):774–781. https://doi.org/10.1590/S1516-8913201402407 Mathur M (2014b) Spatio-temporal variability in distribution patterns of Tribulus terrestris: linking patterns and processes. J Agri Sci Technol 16:1187–1201 Mathur P, Mathur M (2023) Machine learning ensemble species distribution modeling of an endangered arid land tree Tecomella undulata: a global appraisal. Arab J Geosci 16:131. https://doi.org/10.1007/s12517-023-11229-z Mathur M, Sundarmoorthy S (2013) Inter-specific association of herbaceous vegetation in semi-arid Thar desert. India Range Manag Agrofor 34(1):26–32 Mathur M, Sundaramoorthy S (2019) Woody perennial diversity at various land forms of the five agro-climatic zones of Rajasthan, India. In: Ramawat K (ed) Biodiversity and Chemotaxonomy. Sustainable Development and Biodiversity, vol 24. Springer, Cham. https://doi.org/10.1007/978-3-030-30746-2_5 McCune JL, Rosner-Katz H, Bennett JR, Schuster R, Kharouba HM (2020) Do traits of plant species predict the efficacy of species distribution models for finding new occurrences? Ecol Evol 10:1–14 Mcsweeney CF, Jones RG, Lee RW, Rowell DP (2015) Selecting CMIP5 GCMS for downscaling over multiple regions. Clim Dynam 44:3237–3260 Meinshausen M, Nicholls ZRJ, Lewis J, Gidden MJ, Vogel E, Freund M, Beyerle U, Nauelsd A, Bauer N, Canadell JG, Daniel JS, John A, Krummel PB, Luderer G, Meinshausen N, Montzka SA, Rayner PJ, Reimann S, Smith SJ, Berg MVD, Velders GJM, Vollmer MK, Wang RHJ (2020) The shared socio-economic pathway (SSP) greenhouse gas concentration and their extension to 2500. Geosci Model Dev 13:3571–3605. https://doi.org/10.5194/gmd-13-3571-2020 Mertia RS, Sinha NK, Kandpal BK, Singh D (2010) Evaluation of Indian Myrrh (Commiphora wightii) landraces for hyper arid Thar Desert. Indian J Agric Sci 80(10):869–871 Millennium Ecosystem Assessment (2005) Ecosystems and human well-being: global assessment reports. Island Press, Washington DC Mishra SN, Kumar D, Kumar B, Tiwari S (2021) Assessing impact of varying climatic conditions on distribution of Buchanania cochinchinensis in Jharkhand using species distribution modelling approach. Curr Res Environ Sustain 3:100025. https://doi.org/10.1016/j.crsust.2021.100025 Mondal T, Bhatt D, Ramesh K (2022) Bioclimatic modelling of Lantana camara invasion in the Shivalik landscape of Western Himalaya. Trop Ecol. https://doi.org/10.1007/s42965-022-00264-8 Mousazade M, Ghanbarian G, Pourghasemi HR, Safaeian R, Cerda A (2019) Maxent data mining technique and its comparison with a bivariate statistical model for predicting the potential distribution of Astragalus fasciculifolius Boiss. Sustainability 11:3452. https://doi.org/10.3390/su11123452 Nunez-Penichet C, Cobos ME, Soberon J (2021) Non-overlapping climatic niches and biogeographic barriers explain disjunct distributions of continental Urania moths. Fron Biogeo 13(2):e52142 Osorio-Olivera L, Lira-Noriega A, Soberon J, Townsend PA, Facon M, Contreas Diaz RG, Martinez-Meyer E, Barve V, Barve N (2020) Ntbox: an R package with graphical user interface for modelling and evaluating multidimensional ecological niches. Methods Ecol Evol 11:1199–1206. https://doi.org/10.1111/2041-210X.13452 Padalia H, Srivastava V, Kushwaha SPS (2014) Modelling potential invasion range of alien invasion species, Hyptis suaveolens (L) in India: comparison of MaxEnt and GARP. Ecol Infor 22:36–43 Parmar PJ (2003) Loss of Commiphora wightii (Arn.) Bhandari in Indian Desert. Bull Bo Surv India 45:77–90 Pecchi M, Marchi M, Burton V, Giannetti F, Moriondo M, Bernetti I, Bindi M, Chirici G (2019) Species distribution modelling to support forest management. A literature review. Ecol Modell 411:108817 Phillips SJ, Dudik M (2008) Modelling of species distributions with Maxent: new extensions and a comprehensive evaluation. Ecography 31:161–175 Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190:231–259 Pradhan P (2016) Strengthening Maxent modelling through screening of redundant explanatory bioclimatic variables with variance inflation factor analysis. Researcher 8(5):29–34 Prakash J, Kasera PK, Chawan DD (2000) A report on polyembryony in Commiphora wightii from Thar Desert, India. Curr Sci 78(10):1185–1187 Priti H, Aravind NA, Uma Shaanker R, Ravikanth G (2016) Modelling impacts of future climate on the distribution of Myristicaceae species in the Western Ghats, India. Ecol Eng 89:14–23 Purohit S, Rawat N (2022) MaxEnt modeling to predict the current and future distribution of Clerodendrum infortunatum L. under climate change scenarios in Dehradun district, India. Model Earth Syst Environ 8:2051–2063. https://doi.org/10.1007/s40808-021-01205-5 Radosavljevic A, Anderson RP (2014) Making better Maxent models of species distributions: complexity, overfitting and evaluation. J Biogeogr 41:629 Rahaman SM, Ghosh BG, Garai S, Khatun M, Ranjan A, Mishra R, Tiwari S (2022) Assessing potential distribution zone prone to invasion risk of Hyptis suaveolens (L) in Jharkhand, Eastern India using MaxEnt. Int J Ecol Environ Sci 48:281–294 Rajpoot R, Adhikari D, Verma S, Saikia P, Kumar A, Grant KR, Dayanandan A, Kumar A, Khare PK, Khan ML (2020) Climate models predict a divergent future for the medicinal tree Boswellia serrata Roxb. in India. Glob Ecol Conserv 23:e01040 Ramawat KG, Mathur M, Dass S, Suthar S (2008) Guggulsterone: a potent natural hypolipidemic agent from Commiphora wightii—problems, perseverance, and prospects In: Ramawat KG, Merillon JM eds Bioactive Molecules and Medicinal Plants. Springer, Heidelberg: 101–121. https://doi.org/10.1007/978-3-540-74603-4_5 Ray D, Behera MD, Jacob J (2014) Indian Brahmaputra valley offers significant potential for cultivation of rubber tree. Curr Sci 107(3):461–469 Ray D, Behera MD, Jacob J (2018) Evaluating ecological niche models: a comparison between Maxent and GARP for predicting distribution of Hevea brasiliensis in India. Proc Natl Acad Sci India Sect B Biol Sci 88:1337–1343 Reddy CS, Meena SL, Krishna PH, Charan PD, Sharma KC (2012) Conservation threat assessment of Commiphora wightii (Arn.) Bhandari—an economically important species. Taiwania 57(3):288–293 Remya K, Ramachandran A, Jayakumar S (2015) Predicting the current and future suitable habitat distribution of Myristica dactyloides Gaertn. using Maxent model in the Eastern Ghats, India. Ecol Eng 82:184–188 Renner IW, Warton DI (2013) Equivalence of MAXENT and Poisson point process models for species distribution modeling in ecology. Biometrics 69:274–281 Rong Z, Zhao C, Liu J, Gao Y, Zang F, Guo Z, Mao Y, Wang L (2019) Modeling the effect of climate change on the potential distribution of Qinghai Spruce (Picea crassifolia Kom.) in Qilian mountains. Forest 10:62. https://doi.org/10.3390/f10010062 Saini LS, Rajput SK, Rathor TR, Tomar UK (2018) Non-destructive harvesting of oleo-gum resin in Commiphora wightii (Arnott) Bhandari–a critically endangered plant. Ind Crops Prod 113:259–265 Salam N, Reshi ZA, Shah MA (2018) Habitat suitability modeling for Lagotis cashmeriana (Royle) Ruprr., a threatened species endemic to Kashmir Himalayan alpines. Geol Ecol Landsc. https://doi.org/10.1080/24749508.2020.1816871 Samanta JA, Saravanan R, Gajbhiye NA, Mandal K (2012) Impact of soil moisture levels on growth, photosynthetic competence and oleo–gum–resin production of guggal (Commiphora wightii). J Trop For Sci 24(4):538–545 Samanta JN, Mandal K, Saravanan R, Gajbhiye N, Velumani R (2016) Influence of tapping position, intensity of tapping and season on gummosis of guggal (Commiphora wightii), oleo-gum-resin yield and quality. Ind J Ag Sci 86(1):144–146 Sarikaya O, Karaceylan IB, Sen I (2018) Maximum entropy modelling (Maxent) of current and future distributions of Ips mannsfeldi (Wachtl, 1879) (Curculionidae: Scolytinae) in Turkey. App Ecol Environ Res 16:2527–2535 Sarma B, Baruah PS, Tanti (2018) Habitat distribution modelling for reintroduction and conservation of Aristolochia indica L.—a threatened medicinal plant in Assam, India. J Threat Taxa 10(11):12531–12537. https://doi.org/10.11609/jott.3600.10.11.12531-12537 Sen S, Ameya G, Srirama R, Ravikanth G, Aravind NA (2016a) Modeling the impact of climate change on wild Piper nigrum (Black Pepper) in Western Ghats, India using Ecological Niche models. J Plant Res 129:1033–1040 Sen S, Shivaprakash KN, Aravind NA, Ravikanth G, Dayanandan S (2016b) Ecological niche modeling for conservation planning of an endemic snail in the verge of becoming a pest in cardamom plantations in the Western Ghats Biodiversity Hotspot. Ecol Evol 6:6510–6523 Sharma S, Arunachalam K, Bhavsar D, Kala R (2018) Modeling habitat suitability of Perilla frutescens with Maxent in Uttarakhand—a conservation approach. J Appl Res Med Aromatic Plants 10:99–105 Sillero N, Barbosa AM (2021) Common mistakes in ecological niche models. Int J Geogr Infor Sci 35(2):213–226. https://doi.org/10.1080/13658816.2020.1798968 Singh V, Singh M (2006) Biodiversity of Desert National Park, Rajasthan. Botanical Survey of India, Kolkata, p 344 Singhal H, Gaur A, Tomar UK (2014) Observations on flowering and fruiting in Commiphora wightii (Arnott) Bhandari. Eur J Med Plants 4(9):1087–1097 Sinha NK, Mertia RS, Kandpal BK, Kumawat RN, Santra P, Daleep S (2012) Morphological characterization of guggal (Commiphora wightii) provenances from extremely arid parts of India. For Trees Livelihoods 21(1):63–69. https://doi.org/10.1080/14728028.2012.669579 Soni V (2010) In-situ conservation of Commiphora wightii a red-listed medicinal plant species of Rajasthan state, India. Project Report, Species Survival Commission and IUCN 1–30. Thakur KK, Bhat P, Kumar A, Ravikanth G, Saiki P (2022) Distribution mapping of Bauhinia vahlii Wight & Arn. in India using ecological niche modelling. Trop Ecol 63:286–299. https://doi.org/10.1007/s42965-021-00197-8 Tiwari S, Mishra SN, Kumar D, Kumar B, Vaidy SN, Ghosh BG, Rahaman SM, Khatun M, Garai S, Kumar A (2022) Modelling the potential risk zone of Lantana camara invasion and response to climate change in eastern India. Ecol Process 11:10. https://doi.org/10.1186/s13717-021-00354-w Tomar UK, Singhal H, Gaur A, Saini LS (2021) Population density, genetic diversity and hot spots of Commiphora wightii (Arnott) Bhandari in Rajasthan State. J Appl Res Med Aromatic Plants 25:100323. https://doi.org/10.1016/j.jarmap.2021.100323 Tomar UK (2013) Assessment of Guggul germplasm for studying population density, diversity, female-male plant's ratio for in situ and ex situ conservation in Rajasthan. SFD Rajasthan. ICFRE Report. https://forest.rajasthan.gov.in/content/dam/raj/forest/ForestDepartment/PDFs/Department%20Wing/Forest%20Research/Silva%20Technical%20Publication/PROGRESS%20REPORT%20OF%20THE%20PROJECT%20BY%20AFRI/Final_Progress_Report_March_2014_Guggal.pdf Tripathi A, Shukla JK, Gehlot A, Mishra DK (2016) Condensed node proliferation technique (CNPT): a better low-cost macro-propagation approach through min-cuttings of Commiphora wightii (Arn.) Bhandari an endangered plant of Indian Thar Desert. Adv For Sci 3(4):65–69 Tuanmu MN, Jetz W (2015) A global, remote sensing based characterization of terrestrial habitat heterogeneity for biodiversity and ecosystem modelling. Global Ecol Biogeogr 24:1329–1339. https://doi.org/10.1111/geb.12365 Ved D, Saha D, Ravikumar K, Haridasan K (2015) Commiphora wightii. The IUCN Red List of Threatened Species. https://doi.org/10.2305/IUCN.UK.2015-2.RLTS.T31231A50131117.en.e.T31231A50131117 Verma RK, Ibrahim M, Fursule A, Mitra R, Sastry JLN, Ahmad S (2022) Metabolomic profiling of Commiphora wightii (Arn.) Bhandari bark oleogum-resin, and stem collected from different geographical regions of India. S Afr J Bot 149:211–221 Vitor HFG, Stephanie DI, Niels R et al (2018) Species Distribution Modelling: contrasting presence-only models with plot abundance data. Sci Rep 8:1003. https://doi.org/10.1038/s41598-017-18927-1 Wang HH, Wonkka CL, Treglia ML, Grant WE, Smeins FE, Rogers WE (2015) Species distribution modelling for conservation of an endangered endemic orchid. AoB Plants 7:e039. https://doi.org/10.1093/aobpla/plv039 Warren DL, Glor RE, Turelli M (2010) ENMTools: a toolbox for comparative studies of environmental niche models. Ecography 33:607–611 Wei BO, Wang R, Hou K, Wang X, Wu W (2018) Predicting the current and future cultivation regions of Carthamus tinctorius L. using Maxent model under climate change in China. Glob Ecol Conser 16:e00477. https://doi.org/10.1016/j.gecco.2018.e00477 West AM, Kumar S, Brown CS, Stohlgren TJ, Bromberg J (2016) Filed validation of an invasive species maxent model. Ecol Infor 36:126–134 Wisz MS, Hijmans RJ, Li J, Peterson AT, Graham CH, Guisan A (2008) Predicting species distributions working group. Effects of sample size on the performance of species distribution models. Diver Distri 14:763–773 Wu J, Xia C, Meier J, Li S, Hu X, Lala DS (2002) The hypolipidemic natural product guggulsterone acts as an antagonist of the bile acid receptor. Mol Endocrinol 16(7):1590–1597. https://doi.org/10.1210/mend.16.7.0894 Xu W, Jin J, Cheng J (2021) Predicting the potential geographic distribution and habitat suitability of two economic forest trees on the Loess Plateau, China. Forests 12:747. https://doi.org/10.3390/f12060747 Yadava BBL (2011) Commiphora wightii (Gum-Guggul) present status in India: an overview. Herbal Tech Industry 8(1):24–28 Yadava BBL, Billore KV, Joseph JG, Chaturvedy DD (1999) Cultivation of GUGGULU,” Central Council in Ayurveda and Siddha (Ayush), New Delhi, 1–87. Ye XZ, Zhao GH, Zhang MZ, Vui XY, Fan HH, Liu B (2020) Distribution pattern of endangered plants Semiliquidambar catayensis (Hamamelidaceae) in response to climate change after the last interglacial period. Forest 11:434. https://doi.org/10.3390/f11040434 Yi YJ, Cheng X, Yang ZF, Zhang SH (2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng 92:260–269 Zhang Y, Tang J, Ren G, Zhao K, Wang X (2021) Global potential distribution prediction of Xanthium italicum based on Maxent model. Sci Rep 11:16545. https://doi.org/10.1038/s41598-021-96041-z Zhao G, Cui X, Sun J, Li T, Wang Q, Ye X, Fan B (2021) Analysis of the distribution pattern of Chinese Ziziphus jujuba under climate change based on optimized biomod2 and MaxEnt models. Ecol Indic 132:108256. https://doi.org/10.1016/j.ecolind.2021.108256