Sự khác biệt sinh thái dễ bị ảnh hưởng bởi những thay đổi môi trường hơn sự phong phú thuế hệ gia đình trong kỷ Phấn Trắng ở vùng Alpstein (đông bắc Thụy Sĩ)

Swiss Journal of Palaeontology - Tập 137 - Trang 49-64 - 2017
Amane Tajika1, Peter Kürsteiner2, Christian Klug1
1Paläontologisches Institut und Museum, Universität Zürich, Zurich, Switzerland
2Naturmuseum St. Gallen, St. Gallen, Switzerland

Tóm tắt

Nghiên cứu về cổ sinh thái toàn cầu qua các thời kỳ thường bỏ qua các chi tiết khu vực. Những nghiên cứu khu vực về cổ sinh thái là cần thiết để hiểu rõ hơn về cả những thay đổi cổ sinh thái ở quy mô khu vực và toàn cầu. Chúng tôi đã phân tích cổ sinh thái của một chuỗi trầm tích kỷ Phấn Trắng ở Alpstein (các bang Appenzell Ausserrhoden, Appenzell Innerrhoden và St. Gallen, đông bắc Thụy Sĩ), kéo dài từ giai đoạn Barremian đến Cenomanian. Hai chỉ số đa dạng về sự phong phú thuế hệ gia đình và sự khác biệt sinh thái (sự chiếm lĩnh không gian sinh thái) với khái niệm nhân tố dinh dưỡng đã được sử dụng để ghi lại những thay đổi trong các cộng đồng cổ qua thời gian. Kết quả của chúng tôi cho thấy rằng sự phong phú thuế hệ không thay đổi đáng kể, trong khi có những thay đổi rõ rệt xảy ra trong sự chiếm lĩnh không gian sinh thái theo thời gian. Những thay đổi trong việc sử dụng không gian sinh thái có thể bắt nguồn từ sự biến động của độ sâu nước và nhiệt độ đại dương. Ngoài những thay đổi này về mực nước biển và nhiệt độ, kết quả của chúng tôi gợi ý rằng độ sâu nước cao hơn ở phần phía đông của vùng Alpstein. Sự chiếm lĩnh không gian sinh thái có sự đa dạng vừa phải theo thời gian, điều này có thể liên quan đến các điều kiện thuận lợi như độ sâu nước vừa phải, đã khiến khu vực này có thể cư trú cho nhiều loại sinh vật. Chỉ trong giai đoạn cuối của Barremian, có lẽ biển quá nông, do đó ngăn cản sự hình thành các hiệp hội đa dạng cao. Các kiểm định thống kê chỉ ra rằng những thay đổi theo thời gian của sự phong phú thuế hệ gia đình và sự khác biệt sinh thái là tách biệt và rằng sự khác biệt sinh thái có sự biến động cao hơn nhiều đối với những thay đổi môi trường so với sự phong phú thuế hệ gia đình.

Từ khóa

#cổ sinh thái #kỷ Phấn Trắng #đa dạng sinh học #sự khác biệt sinh thái #Alpstein #Thụy Sĩ

Tài liệu tham khảo

Alroy, J. (2010a). Fair sampling of taxonomic richness and unbiased estimation of origination and extinction rates. Quantitative Methods in Paleobiology. Paleontological Society Papers, 16, 55–80. Alroy, J. (2010b). Geographical, environmental and intrinsic biotic controls on Phanerozoic marine diversification. Palaeontology, 53(6), 1211–1235. Archibald, J. D., Clemens, W., Padian, K., Rowe, T., Macleod, N., Barrett, P. M., et al. (2010). Cretaceous extinctions: Multiple causes. Science, 328(5981), 973. Bambach, R. K. (1977). Species richness in marine benthic habitats through the Phanerozoic. Paleobiology, 3(2), 152–167. Bambach, R. K. (1983). Ecospace utilization and guilds in marine communities through the Phanerozoic. In M. J. S. Tevesz & P. L. McCall (Eds.), Biotic interactions in recent and fossil benthic communities (pp. 719–746). New York: Springer, US. Barnosky, A. D., Matzke, N., Tomiya, S., Wogan, G. O. U., Swartz, B., Quental, T. B., et al. (2011). Has the Earth’s sixth mass extinction already arrived? Nature, 471(7336), 51–57. Bernard, E. L., Ruta, M., Tarver, J. E., & Benton, M. J. (2010). The fossil record of early tetrapods: Worker effort and the end-Permian mass extinction. Acta Palaeontologica Polonica, 55(2), 229–239. Bodin, S., Godet, A., Vermeulen, J., Linder, P., & Föllmi, K. B. (2006). Biostratigraphy, sedimentology and sequence stratigraphy of the latest Hauterivian–early Barremian drowning episode of the Northern Tethyan margin (Altmann Member, Helvetic Nappes, Switzerland). Eclogae Geologicae Helvetiae, 99(2), 157–174. Bollinger, D. (1988). Die Entwicklung des distalen osthelvetischen Schelfs im Barremian und Früh-Aptian: Drusberg-, Mittagsspitz und Schrattenkalk-Fm. im Vorarlberg und Allgäu. Dissertation. Universität Zürich. Bonvallet, L. (2015). Evolution of the Helvetic Shelf (Switzerland) during the Barremian–Early Aptian: Paleoenvironmental, Paleogeographic and Paleoocianographic Controlling Factors. Dissertation. University of Lausanne. Brachert, T., & Dullo, W.-C. (2000). Shallow burial diagenesis of skeletal carbonates: Selective loss of aragonite shell material (Miocene to Recent, Queensland Plateau and Queensland Trough, NE Australia)—implications for shallow cool-water carbonates. Sedimentary Geology, 136(3), 169–187. Bush, A. M., & Bambach, R. K. (2004). Did alpha diversity increase during the Phanerozoic? Lifting the veils of taphonomic, latitudinal, and environmental biases. The Journal of Geology, 112(6), 625–642. Bush, A. M., & Bambach, R. K. (2015). Sustained Mesozoic–Cenozoic diversification of marine Metazoa: A consistent signal from the fossil record. Geology, 43(11), 979–982. Bush, A. M., Bambach, R. K., & Daley, G. M. (2007). Changes in theoretical ecospace utilization in marine fossil assemblages between the mid-Paleozoic and late Cenozoic. Paleobiology, 33(01), 76–97. Bush, A. M., & Daley, G. M. (2008). Comparative paleoecology of fossils and fossil assemblages. The Paleontological Society Papers, 14, 289–317. Canfield, D., & Raiswell, R. (1991). Carbonate precipitation and dissolution: Its relevance to fossil preservation. In P. Alison & D. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record (pp. 411–453). New York: Plenum. Cherns, L., & Wright, V. P. (2000). Missing molluscs as evidence of large-scale, early skeletal aragonite dissolution in a Silurian sea. Geology, 28(9), 791–794. Crame, J. A. (2001). Taxonomic diversity gradients through geological time. Diversity and Distributions, 7(4), 175–189. Crame, J. (2002). Evolution of taxonomic diversity gradients in the marine realm: A comparison of Late Jurassic and Recent bivalve faunas. Paleobiology, 28(2), 184–207. Dixon, A. L., & Busch, J. W. (2017). Common garden test of range limits as predicted by a species distribution model in the annual plant Mimulus bicolor. American Journal of Botany, 104(6), 817–827. Erwin, D. H., Valentine, J. W., & Sepkoski, J. J. (1987). A comparative study of diversification events: The early Paleozoic versus the Mesozoic. Evolution, 41(6), 1177–1186. Eugster, H., Forrer, M., Fröhlicher, H., Kempf, T., Schlatter, L., Blaser, R., Funk, H., Langenegger, H., Spoerri, M., & Habicht, K. (1982). Säntis (map sheet 1115), Geological Atlas of Switzerland 1:25.000, N. 78. Wabern: Federal Office of Topography, Swisstopo. Föllmi, K. (1986). Die Garschella-und Seewerkalkformation (Aptian-Santonian) im Voralberger Helvetikum und Ultrahelvetikum. Mitteilungen aus dem Geologischen Institut der Eidgenössischen Technischen Hochschule und der Universität Zürich, Neue Folge, 262, 1–391. Föllmi, K. (1989a). Mid-Cretaceous platform drowning, current-induced condensation and phosphogenesis, and pelagic sedimentation along the eastern Helvetic shelf (northern Tethys margin). Cretaceous of the Western Tethys: Stuttgart, E. Schweizerbart’sche Verlagsbuchhandlung (pp. 585–606). Stuttgart: E. Schweizerbart’sche Verlagsbuchhandlung. Föllmi, K. (1989b). Evolution of the mid-Cretaceous triad: Platform carbonates, phosphatic sediments, and pelagic carbonates along the northern Tethys margin. Berlin: Springer. Föllmi, K., Bodin, S., Godet, A., Linder, P., & Van De Schootbrugge, B. (2007). Unlocking paleo-environmental information from Early Cretaceous shelf sediments in the Helvetic Alps: Stratigraphy is the key! Swiss Journal of Geosciences, 100(3), 349–369. Föllmi, K., & Ouwehand, P. (1987). Garschella-Formation und Götzis-Schichten (Aptian-Coniacian): Neue stratigraphische Daten aus dem Helvetikum der Ostschweiz und des Vorarlbergs. Eclogae Geologicae Helvetiae, 80(1), 141–191. Forey, P. L., Fortey, R. A., Kenrick, P., & Smith, A. B. (2004). Taxonomy and fossils: A critical appraisal. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 359(1444), 639–653. Frey, L., Naglik, C., Hofmann, R., Schemm-Gregory, M., Frýda, J., Kroeger, B., et al. (2014). Diversity and palaeoecology of Early Devonian invertebrate associations in the Tafilalt (Anti-Atlas, Morocco). Bulletin of Geosciences, 89(1), 75–112. Funk, H. (1969). Typusprofile der helvetischen Kieselkalk Formation und der Altmann-Schichten. Eclogae Geologicae Helvetiae, 62, 191–203. Hammer, Ø., Harper, D., & Ryan, P. (2001). Paleontological statistics software: Package for education and data analysis. Palaeontologia Electronica, 4(1), 9. Hesselbo, S. P., McRoberts, C. A., & Pálfy, J. (2007). Triassic–Jurassic boundary events: Problems, progress, possibilities. Palaeogeography, Palaeoclimatology, Palaeoecology, 244(1), 1–10. Hofmann, R., Hautmann, M., Wasmer, M., & Bucher, H. (2013). Palaeoecology of the Spathian Virgin Formation (Utah, USA) and its implications for the Early Triassic recovery. Acta Palaeontologica Polonica, 58(1), 149–173. Kidwell, S. M. (2002). Time-averaged molluscan death assemblages: Palimpsests of richness, snapshots of abundance. Geology, 30(9), 803–806. Kidwell, S. M. (2005). Shell composition has no net impact on large-scale evolutionary patterns in mollusks. Science, 307(5711), 914–917. Kidwell, S. M., & Bosence, D. W. (1991). Taphonomy and time-averaging of marine shelly faunas. In P. A. Allison & D. E. G. Briggs (Eds.), Taphonomy: Releasing the data locked in the fossil record (pp. 115–209). New York: Plenum. Knoll, A. H., Bambach, R. K., Payne, J. L., Pruss, S., & Fischer, W. W. (2007). Paleophysiology and end-Permian mass extinction. Earth and Planetary Science Letters, 256(3), 295–313. Koch, C. F., & Sohl, N. F. (1983). Preservational effects in paleoecological studies: Cretaceous mollusc examples. Paleobiology, 9(01), 26–34. Kowalewski, M., Kiessling, W., Aberhan, M., Fürsich, F. T., Scarponi, D., Wood, S. L. B., et al. (2006). Ecological, taxonomic, and taphonomic components of the post-Paleozoic increase in sample-level species diversity of marine benthos. Paleobiology, 32(4), 533–561. Krebs, C. J., (1989) Ecological Methodology. New York: Harper & Row. Lane, A., & Benton, M. J. (2003). Taxonomic level as a determinant of the shape of the Phanerozoic marine biodiversity curve. The American Naturalist, 162(3), 265–276. Monahan, W. B., & Tingley, M. W. (2012). Niche tracking and rapid establishment of distributional equilibrium in the house sparrow show potential responsiveness of species to climate change. PLoS One, 7(7), e42097. Morse, J. W., & Arvidson, R. S. (2002). The dissolution kinetics of major sedimentary carbonate minerals. Earth Science Reviews, 58(1), 51–84. Murphy, A. E., Sageman, B. B., & Hollander, D. J. (2000). Eutrophication by decoupling of the marine biogeochemical cycles of C, N, and P: A mechanism for the Late Devonian mass extinction. Geology, 28(5), 427–430. Neyman, A. (1967). Limits to the application of the ‘trophic group’ concept in benthic studies. OCEANOLOGY-Academy of Sciences of the USSR, 7(2), 149–155. Novack-Gottshall, P. M. (2007). Using a theoretical ecospace to quantify the ecological diversity of Paleozoic and modern marine biotas. Paleobiology, 33(2), 273–294. Ouwehand, P. J. (1987). Die Garschella-Formation (“Helvetischer Gault”, Aptian-Cenomanian) der Churfirsten-Alvier Region (Ostschweiz). Dissertation. ETH Zürich. Pearson, R. G., & Dawson, T. P. (2003). Predicting the impacts of climate change on the distribution of species: Are bioclimate envelope models useful? Global Ecology and Biogeography, 12(5), 361–371. Pfiffner, O. A. (2011). Structural Map of the Helvetic Zone of the Swiss Alps, including Vorarlberg (Austria) and Haute Savoie (France), 1: 100 000. In: Geological Special Map 128. Explanatory notes. Wabern: Swisstopo. Pörtner, H. (2001). Climate change and temperature-dependent biogeography: Oxygen limitation of thermal tolerance in animals. Naturwissenschaften, 88(4), 137–146. Powell, M. G., & Kowalewski, M. (2002). Increase in evenness and sampled alpha diversity through the Phanerozoic: Comparison of early Paleozoic and Cenozoic marine fossil assemblages. Geology, 30(4), 331–334. Pucéat, E., Lécuyer, C., Sheppard, S. M., Dromart, G., Reboulet, S., & Grandjean, P. (2003). Thermal evolution of Cretaceous Tethyan marine waters inferred from oxygen isotope composition of fish tooth enamels. Paleoceanography, 18(2), 1029. Raup, D. M. (1972). Taxonomic diversity during the Phanerozoic. Science, 177(4054), 1065–1071. Ritterbush, K., Hoffmann, R., Lukeneder, A., & De Baets, K. (2014). Pelagic palaeoecology: The importance of recent constraints on ammonoid palaeobiology and life history. Journal of Zoology, 292(4), 229–241. Roy, K., Jablonski, D., Valentine, J. W., & Rosenberg, G. (1998). Marine latitudinal diversity gradients: Tests of causal hypotheses. Proceedings of the National Academy of Sciences, 95(7), 3699–3702. Sala, P., Pfiffner, O. A., & Frehner, M. (2014). The Alpstein in three dimensions: Fold-and-thrust belt visualization in the Helvetic zone, eastern Switzerland. Swiss Journal of Geosciences, 107(2–3), 177–195. Schenk, K. (1992). Die Drusberg- und Schrattenkalk-Formation (Unterkreide) im Helvetikum des Berner Oberlandes (pp. 1–169). Ph.D. thesis. Geological Institute, University of Berne. Scott, R. W. (2014). A Cretaceous chronostratigraphic database: construction and applications. Carnets de Geologie-Notebooks on Geology, 14(2), 15–37. Sepkoski, J. J. (1981). A factor analytic description of the Phanerozoic marine fossil record. Paleobiology, 7(1), 36–53. Sepkoski, J. J. (1984). A kinetic model of Phanerozoic taxonomic diversity. III. Post-Paleozoic families and mass extinctions. Paleobiology, 10(02), 246–267. Sepkoski, J. J. (1988). Alpha, beta, or gamma: Where does all the diversity go? Paleobiology, 14(03), 221–234. Sepkoski, J. J., Bambach, R. K., Raup, D. M., & Valentine, J. W. (1981). Phanerozoic marine diversity and the fossil record. Nature, 293(5832), 435–437. Sepkoski, J. J. J., & Sheehan, P. M. (1983). Diversification, faunal change, and community replacement during the Ordovician radiations. In M. J. S. Tevesz & P. L. McCall (Eds.), Biotic interactions in recent and fossil benthic communities (pp. 673–717). New York: Springer, US. Sheehan, P. M. (2001). The Late Ordovician mass extinction. Annual Review of Earth and Planetary Sciences, 29(1), 331–364. doi:10.1146/annurev.earth.29.1.331. Signor, P. (1985). Real and apparent trends in species richness through time. In J. Valentine (Ed.), Phanerozoic diversity patterns: Profiles in macroevolution (pp. 129–150). Princeston: Princeton University Press. Smith, A., Nelson, C., & Danaher, P. (1992). Dissolution behaviour of bryozoan sediments: Taphonomic implications for nontropical shelf carbonates. Palaeogeography, Palaeoclimatology, Palaeoecology, 93(3), 213–226. Sulser, H., Friebe, G., & Kürsteiner, P. (2013). Little-known brachiopods from the Cretaceous of the Helvetic realm of NE Switzerland (Alpstein) and W Austria (Vorarlberg). Swiss Journal of Geosciences, 106(2), 397–408. Tajika, A., Kürsteiner, P., Pictet, A., Lehmann, J., Tschanz, K., Jattiot, R., et al. (2017). Cephalopod associations and palaeoecology of the Cretaceous (Barremian–Cenomanian) succession of the Alpstein, northeastern Switzerland. Cretaceous Research, 70, 15–54. Thuiller, W., Lavorel, S., & Araújo, M. B. (2005). Niche properties and geographical extent as predictors of species sensitivity to climate change. Global Ecology and Biogeography, 14(4), 347–357. Ubukata, T. (2016). Biases in paleontological data and their calibration for paleobiodiversity studies. Fossils, 100, 29–43. Wohlwend, S., Hart, M., & Weissert, H. (2015). Ocean current intensification during the Cretaceous oceanic anoxic event 2—evidence from the northern Tethys. Terra Nova, 27(2), 147–155.