Tế bào năng lượng mặt trời nhạy sáng sử dụng sol-gel thân thiện với môi trường với anode thiếc được dop bằng nhôm

Springer Science and Business Media LLC - Tập 30 - Trang 60524-60537 - 2023
Naveen Kumar Panneer1, Chandrakala Venkatraman1, Neena Bachan1, Jothi Jeyarani Wilson1, Merlin Arnold Edwin1, Antony Robinson Jesudasan1, Merline Shyla Joseph1
1Department of Physics, Energy Nanotechnology Centre (ENTeC), Loyola Institute of Frontier Energy (LIFE), Loyola College, Chennai, India

Tóm tắt

Bài báo này đưa ra báo cáo về việc chế tạo tế bào năng lượng mặt trời nhạy sáng (DSSC) sử dụng sol-gel thân thiện với môi trường dựa trên các hạt nano oxit thiếc (SnO2) dop bằng nhôm (Al) với các nồng độ khác nhau (0.5, 1 và 5 mol%) của Al, cho thấy các đặc tính quang và điện tốt hơn so với các dạng tự nhiên. Các tính chất vật lý, hóa học, quang học và điện của các hạt nano đã tổng hợp được nghiên cứu bằng các công cụ phân tích khác nhau. Nghiên cứu nhiễu xạ tia X (XRD) cho thấy cấu trúc tinh thể của các mẫu đã chuẩn bị thuộc về hạt nano SnO2 đều đặn với kích thước tinh thể giảm cho các hạt nano SnO2 được dop bằng Al. Phân tích kính hiển vi điện tử quét phát xạ trường (FESEM) cho thấy kích thước hạt giảm khi được dop bằng Al, làm tăng rõ rệt các đặc tính quang và bề mặt của hạt nano SnO2. Các nghiên cứu về tính dẫn quang chỉ ra rằng tất cả các mẫu đều có phản ứng tuyến tính tốt với sự gia tăng điện trường trong bóng tối và dòng quang, cho thấy khả năng chuyển đổi quang tốt hơn của các mẫu. Hơn nữa, các hạt nano SnO2 dop bằng Al và hạt nano SnO2 tự nhiên đã được thực hiện các nghiên cứu phân tích tinh vi như kính hiển vi điện tử truyền tải độ phân giải cao (HR-TEM) và phổ điện tử tia X (XPS) để hiểu rõ hơn về các đặc tính của chúng. Các hạt nano SnO2 dop bằng Al được chuẩn bị trong nghiên cứu này ghi nhận các đặc tính quang, bề mặt và điện tốt, từ đó nâng cao khả năng tương thích của chúng cho các ứng dụng quang điện có thể xảy ra, đặc biệt là trong các tế bào năng lượng mặt trời nhạy sáng như một giải pháp năng lượng thay thế an toàn cho môi trường. Hơn nữa, các đặc tính mật độ dòng - điện (J-V) của thành phần photoanode SnO2 dop bằng Al và SnO2 tự nhiên đã được kiểm tra để đánh giá khả năng phù hợp trong DSSC, cho thấy hiệu suất được cải thiện khi được dop bằng hạt nano nhôm.

Từ khóa

#tế bào năng lượng mặt trời #nhạy sáng #sol-gel #dop nhôm #oxit thiếc #hạt nano

Tài liệu tham khảo

Abdullah H, Yunos NH, Mahalingam S, Ahmad M, Yuliarto B (2017) Photovoltaic and EIS performance of SnO2/SWCNTS based–sensitized solar cell. Procedia Eng 170:1–7 Ahn H-J, Choi H-C, Park K-W, Kim S-B, Sung Y-E (2004) Investigation of the structural and electrochemical properties of size-controlled SnO2 nanoparticles. J Phys Chem B 108(28):9815–9820 Akpan UG, Hameed BH (2010) The advancements in sol–gel method of doped-TiO2 photocatalysts. Appl Catal Gen 375(1):1–11 Arun Kumar D, Merline Shyla J, Xavier FP (2012) Synthesis and characterization of TiO2/SiO2 nano composites for solar cell applications. Appl Nanosci 2(4):429–436 Bachan N, Asha A, Jothi Jeyarani W, Arun Kumar D, Shyla JM (2015) A comparative investigation on the structural, optical and electrical properties of SiO2–Fe3O4 core–shell nanostructures with their single components. Acta Metall Sin-Engl 28(11):1317–1325 Baer DR, Engelhard MH, Johnson GE, Laskin J, Lai J, Mueller K et al (2013) Surface characterization of nanomaterials and nanoparticles: important needs and challenging opportunities. J Vac Sci Technol A 31(5):050820 Bargougui R, Omri K, Mhemdi A, Ammar S (2015) Synthesis and characterization of SnO2 nanoparticles: effect of hydrolysis rate on the optical properties. Adv Mater Let 6(9):816–819 Benramache S, Belahssen O, Guettaf A, Arif A (2014) Correlation between crystallite size–optical gap energy and precursor molarities of ZnO thin films. J Semicond 35(4):042001 Bonu V, Das A, Sardar M, Dhara S, Tyagi AK (2015) Surface functionalization-enhanced magnetism in SnO2 nanoparticles and its correlation to photoluminescence properties. J Mater Chem C 3(6):1261–1267 Borbon S, Lugo S, Pourjafari D, Aguilar NP, Oskam G, Lopez I (2020) Open-Circuit Voltage (VOC) Enhancement in TiO2-based DSSCs: incorporation of ZnO nanoflowers and Au nanoparticles. ACS Omega 5:10977–10986 Castilhos S, de Souza FM, Colpini LMS, de Mattos Jorge LM, dos Santos OAA (2020) Assessment comparison of commercial TiO2 and TiO2 sol-gel on the degradation of caffeine using artificial radiation. Environ Sci Pollut Res 27(18):22155–22168 Chen L-C (2015) Dye-sensitized solar cells with graphene electron extraction layer. Optoelectronics. https://doi.org/10.5772/60644 Chen Y, Meng Q, Zhang L, Han C, Gao H, Zhang Y, Yan H (2019) SnO2-based electron transporting layer materials for perovskite solar cells: a review of recent progress. J Energy Chem 35:144–167 Cheng JP, Fang JH, Li M, Zhang WF, Liu F, Zhang XB (2013) Enhanced electrochemical performance of CoAl-layered double hydroxide nanosheet arrays coated by platinum films. Electrochim Acta 114:68–75 Corradi AB, Bondioli F, Ferrari AM (2001) Role of praseodymium on zirconia phases stabilization. Chem Mater 13(12):4550–4554 Cui Y, Zhao S, Tao D, Liang Z, Huang D, Xu Z (2014) Synthesis of size-controlled and discrete core–shell aluminum nanoparticles with a wet chemical process. Mater Lett 121:54–57 Cushing SK, Wu N (2016) Progress and perspectives of plasmon-enhanced solar energy conversion. J Phys Chem Lett 7(4):666–675 Denton AR, Ashcroft NW (1991) Vegard’s law. Phys Rev A 43(6):3161–3164 Duan Y, Zheng J, Fu N, Fang Y, Liu T, Zhang Q et al (2015) Enhancing the performance of dye-sensitized solar cells: doping SnO2 photoanodes with Al to simultaneously improve conduction band and electron lifetime. J Mater Chem A 3(6):3066–3073 Fernández-García M, Rodriguez JA (2011) Metal oxide nanoparticles. Encyclopedia of Inorganic and Bioinorganic Chemistry Gong C, Zhang C, Zhuang Q, Li H, Yang H, Chen J, Zang Z (2023) Stabilizing buried interface via synergistic effect of fluorine and sulfonyl functional groups toward efficient and stable perovskite solar cells. Nano-Micro Lett 15:17 Gürakar S, Serin T, Serin N (2014) Electrical and microstructural properties of (Cu, Al, In)-doped SnO2 films deposited by spray pyrolysis. Adv Mat Lett 5(6):309–314 Habte AG, Hone FG, Dejene FB (2019) Effect of solution pH on structural, optical and morphological properties of SnO2 nanoparticles. Physica B: Condensed Matter: 580 411832. https://doi.org/10.1016/j.physb.2019.411832 Hajizadeh-Oghaz M (2020) Evaluation of kinetic data for crystallization of Mn–Fe co-doped ZnO nanoparticles synthesized via sol–gel process. J Solgel Sci Technol 96(2):276–286 Hegde RI (1982) Core level binding energy shifts in dilute tin alloys. Surf Interface Anal 4(5):204–207 Howard DP, Marchand P, Johnson ID, Carmalt CJ, Parkin IP, Darr JA (2016) Conducting Al and Ga-doped zinc oxides; rapid optimisation and scale-up. J Mater Chem A 4(33):12774–12780 Isah KU, Jolayemi BJ, Ahmadu U, Kimpa MI, Alu N (2016) Plasmonic effect of silver nanoparticles intercalated into mesoporous betalain-sensitized-TiO2 film electrodes on photovoltaic performance of dye-sensitized solar cells. Mater Renew Sustain Energy 5(3) Jim WY, Liu X, Yiu WK, Leung YH, Djurišić AB, Chan WK, Liao C, Shih K, Surya C (2014) The effect of different dopants on the performance of SnO2-based dye-sensitized solar cells. Physica Status Solidi (b) 252(3):553–557 Jung D-R, Kim J, Nahm C, Choi H, Nam S, Park B (2011) Review paper: Semiconductor nanoparticles with surface passivation and surface plasmon. Electron Mater Lett 7(3):185–194 Kethzy Agnes J, Sharmila DJ, Praveen B, Pugazhendhi K, Naveen Kumar P, Madhavan J, Merline Shyla J (2019) A featural analysis of aluminium doped SnO2 and bare SnO2 thin films grown on FTO substrates. Mater Today Proc 8:207–213 Kim Min S, Gug YK, Jeong-Sik S, Jae-Young L (2012) Effects of Al concentration on structural and optical properties of Al-doped ZnO thin films. Bull Korean Chem Soc 33:235–1241 Knight MW, King NS, Liu L, Everitt HO, Nordlander P, Halas NJ (2013) Aluminum for Plasmonics. ACS Nano 8(1):834–840 Koops SE, O’Regan BC, Barnes PRF, Durrant JR (2009) Parameters influencing the efficiency of electron injection in dye-sensitized solar cells. J Am Chem Soc 131(13):4808–4818 Kumari N, Ghosh A, Tewari S, Bhattacharjee A (2013) Synthesis, structural and optical properties of Al doped SnO2 nanoparticles. Indian J Phys 88(1):65–70 Kumari PR, Kumari YASJP, Kumari CV (2020) In-vitro pharmacological evaluation of leaf extracts of a medicinal mangrove plant Bruguiera gymnorhiza L. Research Journal of Pharmacy and Technology 13(4):1867 Kumar PN, Mary JSS, Chandrakala V, Jeyarani WJ, Shyla JM (2017) Investigation of superior electro-optical properties of SnO2/SiO2 nanocomposite over its individual counterpart SnO2 nanoparticles. Mater Chem Phys 193:234–243 Kumar V, Uma S, Nagarajan R (2014) Optical and magnetic properties of (Er, F) co-doped SnO2 nanocrystals. Turk J Phys 38:450–462 Lee HM, Kim Y-J (2011) Preparation of size-controlled fine Al particles for application to rear electrode of Si solar cells. Sol Energy Mater Sol 95(12):3352–3358 Lei M, Hu QR, Wang SL, Tang WH (2010) Structural and optical properties of Al-doped SnO2 nanowires. Mater Lett 64(1):19–21 Liu P, Sharmoukh W, Bo X, Li Y, Boschloo G, Sun L, Kloo L (2017) Novel and stable D−A−π−A dyes for efficient solid-state dye-sensitized solar cells. ACS Omega 2:1812–1819 Li Y, Gao S, Zhang B, Mao H, Tang X (2020) Electrospun Ag-doped SnO2 hollow nanofibers with high antibacterial activity. Electron Mater Lett Mahendiran C, Ganesan R, Gedanken A (2009) Sonoelectrochemical synthesis of metallic aluminum nanoparticles. European Journal of Inorganic Chemistry 2009(14):2050–2053 McClain MJ, Schlather AE, Ringe E, King NS, Liu L, Manjavacas A et al (2015) Aluminum nanocrystals. Nano Lett 15(4):2751–2755 Mishra NK, Kumar C, Kumar A, Kumar M, Chaudhary P, Singh R (2015) Structural and optical properties of SnO2–Al2O3 nanocomposite synthesized via sol-gel route. Mater Sci-Pol 33(4):714–718 Omata K, Kuwahara S, Katayama K, Qing S, Toyoda T, Lee K-M, Wu C-G (2015) The cause for the low efficiency of dye sensitized solar cells with a combination of ruthenium dyes and cobalt redox. Phys Chem Chem Phys 17(15):10170–10175 Pal M, Bera S, Sarkar S, Jana S (2014) Influence of Al doping on microstructural, optical and photocatalytic properties of sol–gel based nanostructured zinc oxide films on glass. RSC Adv 4(23):11552–11563 Park HH (2022) Modification of SnO2 electron transport layer in perovskite solar cells. Nanomaterials 12:4326 Pengfei W, Wang S, Li X, Zhang F (2021) Advances in SnO2-based perovskite solar cells: from preparation to photovoltaic applications. J Mater Chem A 9:19554–19588 Pugazhendhi K, Praveen B, Sharmila DJ, Mary SS, Naveen J, Kumar P, Bharathilenin V and Merline Shyla J (2021) Plasmonic TiO2/Al@ZnO nanocomposite-based novel dye-sensitized solar cell with 11.4% power conversion efficiency. Sol Energy 215:443–450 Rac O, Suchorska-Woźniak P, Fiedot M, Teterycz H (2014) Influence of stabilising agents and pH on the size of SnO2 nanoparticles. Beilstein J Nanotechnol. 5:2192–2201 Rashad MM, Ibrahim IA, Osama I, Shalan AE (2014) Distinction between SnO2 nanoparticles synthesized using co-precipitation and solvothermal methods for the photovoltaic efficiency of dye-sensitized solar cells. Bull Mater Sci 37(4):903–909 Razeghizadeh AR, Lila Z, Iraj K, Vahdat R (2017) Growth and optical properties investigation of UN-doped and Al-doped SnO2 nanostructures by sol-gel method. Iran J Chem Chem Eng 36(5):1–8 Saleha SA, Ibrahim AA, Mohamed SH (2016) Structural and optical properties of nanostructured Fe-doped SnO2. Acta Physica Polonica A 129:1220–1225 Sayadi MH, Homaeigohar S, Rezaei A, Shekari H (2020) Bi/SnO2/TiO2-graphene nanocomposite photocatalyst for solar visible light–induced photodegradation of pentachlorophenol. Environ Sci Pollut Res 28(12):15236–15247 Selvaraj P, Baig H, Mallick TK, Sundaram S (2018) Charge transfer mechanics in transparent dye-sensitised solar cells under low concentration. Mater Lett 222:78–81 Sharmoukh W, Allam NK (2012) TiO2 nanotubes-based dye sensitized solar cell using new photosensitizer with enhanced open-circuit voltage and fill factor. ACS Appl Mater Interfaces 4(8):4413–4418 Shyla JM, Xavier FP, Sagayaraj P (2013) An investigation on the effect of porosity on the transport properties of porous silicon. IJMMP 8(6):462 Singh R, Soni RK (2014) Laser synthesis of aluminium nanoparticles in biocompatible polymer solutions. Applied Physics A 116(2):689–701 Sonai GG, Tiihonen A, Miettunen K, Lund PD, Nogueira AF (2017) Long-term stability of dye-sensitized solar cells assembled with cobalt polymer gel electrolyte. J Phys Chem C 121(33):17577–17585 Sriram S, Thayumanavan A (2013) Effect of Al concentration on the optical and electrical properties of SnO2 thin films prepared by low cost spray pyrolysis technique. Int J Chemtech Res 5(5):2204–2209 Sun Z, Kim JH, Zhao Y, Bijarbooneh F, Malgras V, Dou SX (2012) Improved photovoltaic performance of dye-sensitized solar cells with modified self-assembling highly ordered mesoporous TiO2 photoanodes. J Mater Chem 22(23):11711 Tardio S, Cumpson PJ (2017) Practical estimation of XPS binding energies using widely available quantum chemistry software. Surf Interface Anal 50(1):5–12 Tenkyong T, Bachan N, Raja J, Kumar PN, Shyla JM (2015) Investigation of sol-gel processed CuO/SiO2 nanocomposite as a potential photoanode material. Mater Sci-Pol 33(4):826–834 Trofimenko S (1973) Cyclopalladation reaction. Inorg Chem 12(6):1215–1221 Venkateswara RP, Sankara RB, Venkatramana RS (2014) Synthesis and properties of Al doped SnO2 nanoparticles. Int J ChemTech Res 6:2168–2170 Wagner CD, Riggs WM, Davis LE, Moulder JF (1979) Handbook of X-ray photoelectron spectroscopy. Perkin Elmer, Eden Prairie, p 81 Wang C, Jihuai W, Liu X, Wang S, Yan Z, Chen L, Li G, Zhang X, Sun W, Lan Z (2021) High-effective SnO2-based perovskite solar cells by multifunctional molecular additive engineering. J Alloys Compd 886:161352 Wang F, Sun S, Xu Y, Wang T, Yu R, Li H (2017) High performance asymmetric supercapacitor based on cobalt nickle iron-layered double hydroxide/carbon nanofibres and activated carbon. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-04807-1 Willemen H, Van De Vondel DF, Van Der Kelen GP (1979) An ESCA study of tin compounds. Inorg Chim Acta 34:175–180 Wu J, Dawen Z, Shunping Z (2013) Mesoporous Al-doped SnO2 nanotubes with enhanced gas-sensing properties fabricated by electrospinning. In: AMA Conferences 2013 - SENSOR, pp 257–262. https://doi.org/10.5162/sensor2013/B4.4 Xiuqing Q, Qianhong S, Lingjie Z, Lawson C, Xianping F, Hui Y (2014) A novel method for the preparation of Ag/SnO2 electrical contact materials. Rare Met Mater Eng 43(11):2614–2618 Xu B, Chen Z, Li S (2016) Aluminum-doped SnO2 hollow microspheres as photoanode materials for dye-sensitized solar cells. Int J Photoenergy 2016:1–5 Yang G, Yan Z, Xiao T (2012) Preparation and characterization of SnO2/ZnO/TiO2 composite semiconductor with enhanced photocatalytic activity. Appl Surf Sci 258(22):8704–8712 Yang X, Hou J, Liu Y, Cui M, Lu W (2013) OPAA template-directed synthesis and optical properties of metal nanocrystals. Nanoscale Res Lett 8(1):328 Yuan Hao X, Jiaqiang (2010) Preparation, characterization and photocatalytic activity of nanometer SnO2. IJCEA 1:241–246 Zang J, Bao S-J, Li CM, Bian H, Cui X, Bao Q, Sun CQ, Guo J, Lian K (2008) Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor. J Phys Chem C 112(38):14843–14847 Zhang C, Wang H, Li H, Zhuang Q, Gong C, Hu X, Cai W, Zhao S, Chen J, Zang Z (2021) Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells. J Energy Chem. https://doi.org/10.1016/j.jechem.2021.07.011 Zhuang Q, Zhang C, Gong C, Li H, Li H, Zhang Z, Yang H, Chen J, Zang Z (2022a) Tailoring multifunctional anion modifiers to modulate interfacial chemical interactions for efficient and stable perovskite solar cells. Nano Energy 102:107747 Zhuang Q, Wang H, Zhang C et al (2022b) Ion diffusion-induced double layer doping toward stable and efficient perovskite solar cells. Nano Res 15(6):5114–5122 Zhu H, Yang D, Yu G, Zhang H, Yao K (2006) A simple hydrothermal route for synthesizing SnO2 quantum dots. Nanotechnology 17(9):2386–2389