Ecoenzymatic Stoichiometry and Ecological Theory

Annual Review of Ecology, Evolution, and Systematics - Tập 43 Số 1 - Trang 313-343 - 2012
Robert L. Sinsabaugh1, Jennifer J. Follstad Shah2
1Biology Department, University of New Mexico, Albuquerque, New Mexico 87131;
2Watershed Sciences Department, Utah State University, Logan, Utah 84322

Tóm tắt

The net primary production of the biosphere is consumed largely by microorganisms, whose metabolism creates the trophic base for detrital foodwebs, drives element cycles, and mediates atmospheric composition. Biogeochemical constraints on microbial catabolism, relative to primary production, create reserves of detrital organic carbon in soils and sediments that exceed the carbon content of the atmosphere and biomass. The production of organic matter is an intracellular process that generates thousands of compounds from a small number of precursors drawn from intermediary metabolism. Osmotrophs generate growth substrates from the products of biosynthesis and diagenesis by enzyme-catalyzed reactions that occur largely outside cells. These enzymes, which we define as ecoenzymes, enter the environment by secretion and lysis. Enzyme expression is regulated by environmental signals, but once released from the cell, ecoenzymatic activity is determined by environmental interactions, represented as a kinetic cascade, that lead to multiphasic kinetics and large spatiotemporal variation. At the ecosystem level, these interactions can be viewed as an energy landscape that directs the availability and flow of resources. Ecoenzymatic activity and microbial metabolism are integrated on the basis of resource demand relative to environmental availability. Macroecological studies show that the most widely measured ecoenzymatic activities have a similar stoichiometry for all microbial communities. Ecoenzymatic stoichiometry connects the elemental stoichiometry of microbial biomass and detrital organic matter to microbial nutrient assimilation and growth. We present a model that combines the kinetics of enzyme activity and community growth under conditions of multiple resource limitation with elements of metabolic and ecological stoichiometry theory. This biogeochemical equilibrium model provides a framework for comparative studies of microbial community metabolism, the principal driver of biogeochemical cycles.

Từ khóa


Tài liệu tham khảo

10.1097/01.ss.0000112016.97541.28

10.1016/j.chemosphere.2010.04.022

10.1016/S0960-8524(01)00063-3

10.1111/j.1461-0248.2009.01302.x

10.1128/9781555815882.ch58

Allison SD, 2004, Biotropica, 36, 285

10.1016/j.soilbio.2004.09.014

10.1111/j.1574-6968.1993.tb05814.x

10.1007/s11270-008-9968-5

10.1146/annurev-marine-120709-142731

10.3354/meps006213

10.1111/j.1574-4976.2005.00010.x

10.1111/j.1462-2920.2009.01922.x

10.1111/j.1432-1033.1995.0385k.x

10.1111/j.1529-8817.2010.00829.x

Berg G, 2010, Plant Litter: Decomposition, Humus Formation, Carbon Sequestration

10.4319/lo.1970.15.5.0663

Billen G. 1991. Protein degradation in aquatic environments. See Chróst 1991, pp. 123–43

10.1023/A:1014943304721

10.1111/j.1574-6941.2009.00730.x

Bremner JM, Mulvaney RL. 1978. Urease activity in soils. See Burns 1978, pp. 149–96

10.1890/03-9000

10.1016/j.copbio.2010.10.009

10.1016/j.soilbio.2008.03.001

Burns RG, 1978, Soil Enzymes

10.1201/9780203904039

10.1007/BF00871220

10.1071/MF04049

10.3390/md8040916

10.1016/j.dsr.2009.09.001

10.1016/j.ecss.2008.12.014

Characklis WG, 1990, Biofilms: A Basis for an Interdisciplinary Approach

10.1016/0043-1354(85)90128-9

10.1086/516844

10.4319/lo.1995.40.6.1042

10.1007/978-1-4612-3090-8

10.1007/BF02025000

10.1007/s10533-007-9132-0

10.1007/s10021-006-9013-8

10.1111/j.1365-2745.2008.01362.x

Cunningham HW, 1989, Appl. Environ. Microbiol., 55, 1963, 10.1128/aem.55.8.1963-1967.1989

10.1007/s00253-005-0183-7

10.1111/j.1600-0706.2008.16793.x

10.1038/nature04514

10.1111/j.1365-2486.2011.02546.x

10.1111/j.1574-6941.2008.00550.x

Decho AW, 1990, Oceanogr. Mar. Biol. Annu. Rev., 28, 73

10.1146/annurev.ecolsys.29.1.503

10.1073/pnas.1007783107

10.1016/j.soilbio.2004.07.013

Dick R, 2012, Methods of Soil Enzymology.

10.1111/j.1600-0706.2009.18540.x

10.1111/j.1550-7408.1977.tb01006.x

10.1046/j.1461-0248.2003.00518.x

10.1002/jpln.200321224

10.1016/j.apsoil.2009.05.003

10.1007/978-3-642-46687-8

10.1007/s100219900018

10.4319/lo.1998.43.6.1344

10.1007/BF00335826

10.1016/0038-0717(91)90099-6

10.1086/657684

10.1016/j.soilbio.2004.07.012

10.1038/35051650

10.1016/S0038-0717(01)00101-8

10.1111/j.1461-0248.2006.00919.x

10.1007/BF00397184

10.1016/j.soilbio.2009.06.002

10.1073/pnas.0608099104

10.1073/pnas.0504756102

10.1126/science.1061967

10.3354/meps239263

10.1111/j.1365-2435.2008.01478.x

10.1007/s10021-010-9408-4

10.1038/nrmicro821

10.1080/00103620009370609

10.1002/aheh.19970250505

10.1007/s11104-010-0428-9

10.1016/j.soilbio.2009.03.010

10.1007/s10533-009-9366-0

10.1016/j.ecolind.2012.01.007

10.1111/j.1365-2427.2009.02337.x

10.1111/j.1365-2427.2008.02138.x

10.1016/j.jembe.2007.06.003

10.4319/lom.2006.4.308

10.1007/s00442-010-1601-9

10.4319/lo.1983.28.6.1104

10.3354/meps011299

Hoppe HG. 1991. Microbial extracellular enzyme activity: a new key parameter in aquatic ecology. See Chróst 1991, pp. 60–83

Hoppe HG, 1988, Appl. Environ. Microbiol., 54, 784, 10.1128/aem.54.3.784-790.1988

10.3354/ame019139

10.1146/annurev.earth.35.031306.140057

10.1111/j.1365-2427.1995.tb00892.x

10.1029/2008GB003250

10.2307/2258564

10.3354/ame018247

Kahkonen MA, 2001, Boreal Environ. Res., 6, 19

Karner M, 1995, Microb. Ecol., 30, 143

Kaziev FKH, 1975, Biol. Nauki, 10, 121

10.1890/ES11-00117.1

10.1016/B978-012256371-3/50010-X

10.3354/ame018187

10.1890/05-0150

10.1007/s00253-008-1437-y

10.1016/0048-9697(95)04546-D

10.2307/3761726

10.1007/BF02458623

10.1128/MMBR.66.3.506-577.2002

10.5194/bgd-9-8663-2012

10.1016/j.soilbio.2009.02.031

10.1111/j.1469-8137.2012.04225.x

10.1890/09-0179.1

10.1111/j.1469-8137.2011.03967.x

Marzluf GA, 1997, Microbol. Mol. Biol. Rev., 61, 17

10.1016/0038-0717(90)90056-6

McLaren AD. 1978. Kinetics and consecutive reactions of soil enzymes. See Burns 1978, pp. 97–116

10.1016/j.biortech.2011.07.054

Meyer-Reil LA, 1987, Appl. Environ. Microbiol., 53, 1748, 10.1128/aem.53.8.1748-1755.1987

Michaelis L, 1913, Biochemische Z., 49, 333

Mobley HLT, 1995, Microbiol. Rev., 59, 451, 10.1128/mr.59.3.451-480.1995

10.1146/annurev.mi.03.100149.002103

10.1017/S0954102003001081

10.1016/j.soilbio.2012.05.011

10.1890/0012-9615(2006)076[0151:ATMOLD]2.0.CO;2

10.1016/j.ecss.2003.08.001

Münster U. 1991. Extracellular enzyme activity in eutrophic and polyhumic lakes. See Chróst 1991, pp. 96–122

10.1007/BF00007019

10.1023/A:1006316117817

Oshrain RL, 1976, Appl. Environ. Microbiol., 38, 337, 10.1128/aem.38.2.337-340.1979

Overbeck J, 1975, Verh. Int. Vereinigung Theor. Angew. Limnol., 19, 2600

Overbeck J. 1991. Early studies on ecto- and extracellular enzymes in aquatic environments. See Chróst 1991, pp. 1–5

Pamer E, 2011, Int. J. Environ. Res., 5, 891

10.1111/j.1574-6976.2009.00183.x

10.1016/0038-0717(91)90096-3

10.1093/plankt/fbr069

10.1023/B:ABIM.0000010343.73266.08

10.1111/j.1365-2486.2012.02639.x

Ramirez-Martinez JR, 1966, Enzymologia, 31, 23

10.1038/2161345a0

10.1007/s00248-011-9965-x

10.1007/s00248-003-3001-8

10.1016/S0038-0717(03)00015-4

10.1029/2005GB002606

10.1007/978-3-642-14225-3

10.1007/s10533-011-9596-9

10.4319/lo.2007.52.1.0085

10.1016/j.soilbio.2009.10.014

10.1016/0038-0717(92)90248-V

10.2307/1940086

10.2307/3544444

Sinsabaugh RL, Carreiro MM, Alvarez S. 2002. Enzyme and microbial dynamics during litter decomposition. See Burns 2002, pp. 249–66

10.4319/lo.1997.42.1.0029

10.1890/08-2192.1

10.1007/s10533-010-9482-x

10.1007/s10533-011-9676-x

10.1046/j.1365-2427.2001.00748.x

10.1038/nature08632

10.1111/j.1461-0248.2008.01245.x

10.2307/1940087

10.1016/0038-0717(94)90211-9

10.2307/1467235

10.1007/s00248-010-9696-4

Skujiņš J. 1978. History of abiontic soil enzyme research. See Burns 1978, pp. 1–49

10.1111/j.1574-6941.2010.00999.x

10.4319/lo.1983.28.1.0190

Speir TW, Ross DJ. 1978. Soil phosphatases and sulphatase. See Burns 1978, pp. 197–250

Sterner RW, 2002, Ecological Stoichiometry: The Biology of Elements from Molecules to the Biosphere

10.1111/j.1365-2486.2011.02545.x

10.1080/10643380902945706

10.1007/s00248-005-5156-y

10.2136/sssaj1970.03615995003400020016x

10.3354/meps263001

10.1007/s00374-010-0440-5

10.1016/j.soilbio.2006.08.002

Trasar-Cepeda C, 2011, Soil Enzymology in the Recycling of Organic Wastes and Environmental Restoration

10.1111/j.1461-0248.2008.01230.x

10.1023/A:1022538621950

10.3354/ame01515

10.1002/iroh.200310673

10.1016/j.soilbio.2010.04.001

Wang G, Post WM, Mayes MA. 2012a. Development of microbial-enzyme-mediated decomposition model parameters through steady-state and dynamic analyses. Ecol. Appl. In press. (DOI:10.1890/12-0681.1)

10.1016/j.soilbio.2012.01.011

10.1146/annurev.micro.50.1.183

Wetzel RG, 1981, Verhandlungen Int. Vereinigung Theor. Angwandte Limnol., 21, 337

Wetzel RG. 1991. Extracellular enzymatic interactions: storage, redistribution and interspecific communication. See Chróst 1991, pp. 6–28

10.1007/s00027-011-0242-3

10.4319/lo.1973.18.1.0159

10.1007/s10533-012-9746-8

Zeglin LH, 2007, Oecologia, 296, 65

10.1016/j.ibiod.2007.06.015

10.1016/0038-0717(96)00117-4

10.1016/j.jbiotec.2004.03.030

ZoBell CE, 1943, J. Bacteriol., 46, 39, 10.1128/jb.46.1.39-56.1943