Eco-friendly Synthesis of Zinc Oxide Nanoparticles by Clerodendrum heterophyllum Leaf Extract and Their Biological Applications

Springer Science and Business Media LLC - Tập 13 - Trang 2252-2264 - 2023
Dharmalingam Kirubakaran1, Kuppusamy Selvam1, Mathiazhakan Lavanya1, Muthugounder Subaramanian Shivaswamy2, Vairakkannu Sivasakthi3, Ameer Ali BaigBaig4
1Department of Botany, Periyar University, Salem, India
2Department of Food Technology, Kongu Engineering College, Perundurai, India
3Department of Botany, ERK Arts and Science College, Dharmapuri, India
4Department of Physics, St. Joseph College of Arts and Science for Women, Salem, India

Tóm tắt

Clerodendrum heterophyllum, a member of the Lamiaceae family, has been traditionally used in herbal medicine. In this study, zinc oxide nanoparticles (ZnONPs) were synthesized, which led to a color change from greenish yellow to a pale white precipitate. The synthesized ZnONPs were then subjected to various characterization techniques including UV–visible spectrum, FTIR, XRD, SEM-EDAX, and TEM. The UV–visible spectrum analysis revealed a peak at 366 nm, indicating the presence of ZnONPs. FTIR analysis confirmed the presence of 15 different functional groups in the nanoparticles, while XRD results confirmed their crystalline structure. SEM analysis showed the formation of spherical-shaped nanoparticles, and EDAX analysis confirmed the elemental composition of zinc and oxygen. TEM results indicated that the size of the ZnONPs ranged between 4.68 and 8.65 nm. The antibacterial activities of the ZnONPs were evaluated against Staphylococcus aureus and Escherichia coli, showing high effectiveness with inhibition zones of 13 mm and 11 mm, respectively. The ZnONPs also exhibited antioxidant activity, as demonstrated by their capability to scavenge DPPH (2,2-diphenyl-1-picrylhydrazyl), ABTS (2,2-azino-bis-3-ethylbenzothiazoline-6-sulphonic acid), and H2O2 (hydrogen peroxide radical) assay. Moreover, in HepG2 liver cancer cells, the ZnONPs showed maximum inhibitory effects at 66.86%. In conclusion, this research highlights the biological properties of C. heterophyllum, particularly its potential as a viable resource for the synthesis of ZnONPs.

Tài liệu tham khảo

Wasana, K. G. P., Attanayake, A. P., Jayatilaka, K. A. P. W., & Weerarathna, T. P. (2021). Antidiabetic activity of widely used medicinal plants in the Sri Lankan traditional healthcare system: New insight to medicinal flora in Sri Lanka. Evidence-Based Complementary and Alternative Medicine, 1–12, 6644004. https://doi.org/10.1155/2021/6644004 Bag, S., Mondal, A., Majumder, A., & Banik, A. (2022). Tea and its phytochemicals: Hidden health benefits & modulation of signaling cascade by phytochemicals. Food Chemistry, 371, 131098. https://doi.org/10.1016/j.foodchem.2021.131098 Varghese, S. M., Parisi, S., Singla, R. K., & Begum, A. A. (2022). Trends in food chemistry, nutrition and technology in Indian sub-continent. Springer Nature. https://doi.org/10.1155/2021/6644004 Kirubakaran, D., Selvam, K., Prakash, P., Manimegalai, P., Shivakumar, M. S., & SenthilNathan, S. (2023). Preparation and characterization of biogenic silver nanoparticles using Strobilanthes cordifolia (Vahl) JRI wood leaves and its biological applications. Biotechnology and Applied Biochemistry, 70(2), 870–884. https://doi.org/10.1002/bab.2406 Liao, S., Omage, S. O., Bormel, L., Kluge, S., Schubert, M., Wallert, M., & Lorkowski, S. (2022). Vitamin E and metabolic health: Relevance of interactions with other micronutrients. Antioxidants, 11(9), 1785. https://doi.org/10.3390/antiox11091785 Pandey, S., Dubey, B., & Niranjan, A. K. (2022). Comprehending the presence and application of antiradicals and antioxidants within the human body. Journal of Drug Delivery and Therapeutics, 12(4-S), 236–238. Loganathan, S., Manimaran, K., Mutamimurugan, K., Prakash, D. G., & Subashini, R. (2023). Synthesis of zinc oxide nanoparticles by Pterolobium hexapetalum (Roth) Santapau and Wagh extract and their biological applications. Biomass Conversion and Biorefinery, 1–12, 2190–6823. https://doi.org/10.1007/s13399-023-04732-6 Jasrotia, P., Nagpal, M., Mishra, C. N., Sharma, A. K., Kumar, S., Kamble, U., & Singh, G. P. (2022). Nanomaterials for postharvest management of insect pests: Current state and future perspectives. Frontiers in Nanotechnology, 3, 100. https://doi.org/10.3389/fnano.2021.811056 Loganathan, S., Selvam, K., Sivasakthi, V., Prakash, P., Yamuna, M., Lalitha, K., & Senthil Nathan, S. (2021). Phytochemical and pharmacological evaluation of methanolic extract of Knoxia sumatrensis leaves. Journal of Herbs, Spices & Medicinal Plants, 27(2), 200–217. https://doi.org/10.1080/10496475.2021.1891179 Aldalbahi, A., Alterary, S., Ali AbdullrahmanAlmoghim, R., Awad, M. A., Aldosari, N. S., Fahad Alghannam, S., & Abdulrahman Alrashed, R. (2020). Greener synthesis of zinc oxide nanoparticles: Characterization and multifaceted applications. Molecules, 25(18), 4198. https://doi.org/10.3390/molecules25184198 Anjum, S., Hashim, M., Malik, S. A., Khan, M., Lorenzo, J. M., Abbasi, B. H., & Hano, C. (2021). Recent advances in zinc oxide nanoparticles (ZnO NPs) for cancer diagnosis, target drug delivery, and treatment. Cancers, 13(18), 4570. https://doi.org/10.3390/cancers13184570 Chekroun, M. Z., Benali, M. A., Yahiaoui, I. E., Debab, M., Belmehdi, M. Z., & Tabet-Derraz, H. (2022). Optical properties behavior of ZnO nanoparticles deposited on glass in the ultraviolet–visible spectral range: Experimental and numerical study. Optical Materials, 132, 112769. https://doi.org/10.53063/synsint.2021.1477 Jeyakumar, V., Sundaram, P., & Ramapathiran, N. (2023). Artificial intelligence-based predictive tools for life-threatening diseases. System Design for Epidemics Using Machine Learning and Deep Learning (pp. 123–152). Springer International Publishing. Shafiee, P., Nafchi, M. R., Eskandarinezhad, S., Mahmoudi, S., & Ahmadi, E. (2021). Sol-gel zinc oxide nanoparticles: Advances in synthesis and applications. Synthesis and Sintering, 1(4), 242–254. https://doi.org/10.53063/synsint.2021.1477 Srivastava, N., & Patel, T. (2007). Clerodendrum and health care: An overview. Medicinal and Aromatic Plants and Biotechnology, 1(1), 142–150. Harborne, A. J. (1998). Phytochemical methods a guide to modern techniques of plant analysis. Springer Science & Business Media. https://doi.org/10.3390/antiox9080681 Ghareeb, D. A., Saleh, S. R., Seadawy, M. G., Nofal, M. S., Abdulmalek, S. A., Hassan, S. F., & El Demellawy, M. A. (2021). Nanoparticles of ZnO/berberine complex contract COVID-19 and respiratory co-bacterial infection in addition to elimination of hydroxychloroquine toxicity. Journal of Pharmaceutical Investigation, 51, 735–757. https://doi.org/10.1007/s40005-021-00544-w Ashraf, H., Meer, B., Iqbal, J., Ali, J. S., Andleeb, A., Butt, H., Zia, M., Mehmood, A., Nadeem, M., Drouet, S., & Blondeau, J. P. (2023). Comparative evaluation of chemically and green synthesized zinc oxide nanoparticles: Their in vitro antioxidant, antimicrobial, cytotoxic and anticancer potential towards HepG2 cell line. Journal of Nanostructure in Chemistry, 13(2), 243–261. https://doi.org/10.1007/s40097-021-00460-3 Moreno, E. K., de Macedo, I. Y., Batista, E. A., Machado, F. B., Santos, G. R., Andrade, D. M., & Gil, E. S. (2022). Evaluation of antioxidant potential of commercial Cinnamon samples and its vasculature effects. Oxidative Medicine and Cellular Longevity, 2022. https://doi.org/10.1155/2022/1992039 Mosmann, T. (1983). Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. Journal of Immunological Methods, 65(1–2), 55–63. https://doi.org/10.1016/0022-1759(83)90303-4 Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., & Boyd, M. (1991). Feasibility of a high-flux anticancer drug screen using a diverse panel of cultured human tumor cell lines. Journal of the National Cancer Institute, 83, 757–766. https://doi.org/10.1093/jnci/83.11.757 Estella, O. U., William, A. C., Patrick, O., Ikenna, C., Mba, T., Obinna, O., & Ginikachukwu, U. (2022). Evaluation of the analgesic and antipyretic activity of methanol extract of Combretum bauchiense Hutch & Dalziel (Combretaceae) leaves. Phytomedicine Plus, 2(1), 100166. https://doi.org/10.1016/j.phyplu.2021.100166 Park, J. K., Rupa, E. J., Arif, M. H., Li, J. F., Anandapadmanaban, G., Kang, J. P., & Kang, S. C. (2021). Synthesis of zinc oxide nanoparticles from Gynostemma pentaphyllum extracts and assessment of photocatalytic properties through malachite green dye decolorization under UV illumination-A green approach. Optik, 239, 166249. https://doi.org/10.1016/j.ijleo.2020.166249 Karam, S. T., & Abdulrahman, A. F. (2022). Green synthesis and characterization of ZnO nanoparticles by using Thyme plant leaf extract. In Photonics, 9(8), 594. https://doi.org/10.3390/photonics9080594. MDPI. Manimegalai, P., Selvam, K., Loganathan, S., Kirubakaran, D., Shivakumar, M. S., Govindasamy, M., & Bahajjaj, A. A. A. (2023). Green synthesis of zinc oxide (ZnO) nanoparticles using aqueous leaf extract of Hardwickia binata: Their characterizations and biological applications. Biomass Conversion and Biorefinery, 1–16, 2190–6823. https://doi.org/10.1007/s13399-023-04279-6 Abbasi, B. A., Iqbal, J., Ahmad, R., Zia, L., Kanwal, S., Mahmood, T., & Chen, J. T. (2019). Bioactivities of Geranium wallichianum leaf extracts conjugated with zinc oxide nanoparticles. Biomolecules, 10(1), 38. https://doi.org/10.3390/biom10010038 Adegoke, H. I., & Gbenga, A. A. (2023). Bio-assisted synthesis of zinc oxide nanoparticles from Mimosa pudica aqueous leave extract: Structure and antibacterial activity. Chemistry Africa, 1–14(6), 1283–1296. https://doi.org/10.1007/s42250-022-00581-4 Jan, H., Shah, M., Usman, H., Khan, M. A., Zia, M., Hano, C., & Abbasi, B. H. (2020). Biogenic synthesis and characterization of antimicrobial and antiparasitic zinc oxide (ZnO) nanoparticles using aqueous extracts of the Himalayan Columbine (Aquilegia pubiflora). Frontiers in Materials, 7, 249. https://doi.org/10.3389/fmats.2020.00249 Ramesh, P., Rajendran, A., & Ashokkumar, M. (2022). Biosynthesis of zinc oxide nanoparticles from Phyllanthus Niruri plant extract for photocatalytic and antioxidant activities. International Journal of Environmental Analytical Chemistry, 1–12, 0306–7319. https://doi.org/10.1080/03067319.2022.2041004 Karthika, V., Ramya, V., Kalaiselvi, V., & Shanmathi, S. (2021). Synthesis and characterization of zinc oxide nanoparticles using Justiciaadhatoda leaf extract. International Journal of Advanced Science and Engineering, 7(3), 1839–1842. https://doi.org/10.29294/IJASE.7.3.2021.1839-1842 Aldeen, T. S., Mohamed, H. E. A., & Maaza, M. (2022). ZnO nanoparticles prepared via a green synthesis approach: Physical properties, photocatalytic and antibacterial activity. Journal of Physics and Chemistry of Solids, 160, 110313. https://doi.org/10.1016/j.jpcs.2021.110313 Al-Ghamdi, S. A., Alkathiri, T. A., Alfarraj, A. E., Alatawi, O. M., Alkathiri, A. S., Panneerselvam, C., & Khasim, S. (2022). Green synthesis and characterization of zinc oxide nanoparticles using Camellia sinensis tea leaf extract and their antioxidant, anti-bactericidal and anticancer efficacy. Research on Chemical Intermediates, 48(11), 4769–4783. https://doi.org/10.1007/s11164-022-04845-z Gecer, E. N., Erenler, R., Temiz, C., Genc, N., & Yildiz, I. (2022). Green synthesis of silver nanoparticles from Echinacea purpurea (L.) Moench with antioxidant profile. Particulate Science and Technology, 40(1), 50–57. https://doi.org/10.1080/02726351.2021.1904309 Ahmed, B., Solanki, B., Zaidi, A., Khan, M. S., & Musarrat, J. (2019). Bacterial toxicity of biomimetic green zinc oxide nanoantibiotic: Insights into ZnONP uptake and nanocolloid–bacteria interface. Toxicology Research, 8(2), 246–261. https://doi.org/10.1039/c8tx00267c Dulta, K., Koşarsoy Ağçeli, G., Chauhan, P., Jasrotia, R., & Chauhan, P. K. (2021). Ecofriendly synthesis of zinc oxide nanoparticles by Carica papaya leaf extract and their applications. Journal of Cluster Science, 1–15(33), 603–617. https://doi.org/10.1007/s10876-020-01962-w Bhatti, J. S., Sehrawat, A., Mishra, J., Sidhu, I. S., Navik, U., Khullar, N., & Reddy, P. H. (2022). Oxidative stress in the pathophysiology of type 2 diabetes and related complications: Current therapeutics strategies and future perspectives. Free Radical Biology and Medicine. https://doi.org/10.1016/j.freeradbiomed.2022.03.019 Garg, V., & Dutt, R. (2023). Evaluation of antioxidant, antibacterial and anticancer activity of fruits and leaves extract of Manilkara zapota against A431 skin cancer cell lines. South African Journal of Botany, 153, 219–226. https://doi.org/10.1016/j.sajb.2022.12.023 Senthamarai, M. D., & Malaikozhundan, B. (2022). Synergistic action of zinc oxide nanoparticle using the unripe fruit extract of Aegle marmelos (L.) antibacterial, antibiofilm, radical scavenging and ecotoxicological effects. Materials Today Communications, 30, 103228. https://doi.org/10.1016/j.mtcomm.2022.103228 Loganathan, S., Selvam, K., Padmavathi, G., Shivakumar, M. S., Senthil-Nathan, S., Sumathi, A. G., & Almutairi, S. M. (2022). Biological synthesis and characterization of Passiflora subpeltata Ortega aqueous leaf extract in silver nanoparticles and their evaluation of antibacterial, antioxidant, anti-cancer and larvicidal activities. Journal of King Saud University-Science, 34(3), 101846. https://doi.org/10.1016/j.jksus.2022.101846 Amuthavalli, P., Hwang, J. S., Dahms, H. U., Wang, L., Anitha, J., Vasanthakumaran, M., & Singh, S. (2021). Zinc oxide nanoparticles using plant Lawsonia inermis and their mosquitocidal, antimicrobial, anticancer applications showing moderate side effects. Scientific Reports, 11(1), 1–13. https://doi.org/10.1038/s41598-021-88164-0 Alharthi, M. N., Ismail, I., Bellucci, S., Jaremko, M., Abo-Aba, S. E., & Abdel Salam, M. (2023). Biosynthesized zinc oxide nanoparticles using Ziziphus jujube plant extract assisted by ultrasonic irradiation and their biological applications. Separations, 10(2), 78. https://doi.org/10.3390/separations10020078 Rakgotho, T., Ndou, N., Mulaudzi, T., Iwuoha, E., Mayedwa, N., & Ajayi, R. F. (2022). Green-synthesized zinc oxide nanoparticles mitigate salt stress in Sorghum bicolor. Agriculture, 12(5), 597. https://doi.org/10.3390/agriculture12050597 Xiong, P., Huang, X., Ye, N., Lu, Q., Zhang, G., Peng, S., & Liu, Y. (2022). Cytotoxicity of metal-based nanoparticles: From mechanisms and methods of evaluation to pathological manifestations. Advanced Science, 9(16), 2106049. https://doi.org/10.1002/advs.202106049 Kirubakaran, D., Selvam, K., Prakash, P., Shivakumar, M. S., & Rajkumar, M. (2023). In-vitro antioxidant, antidiabetic, anticholinergic activity of iron/copper nanoparticles synthesized using Strobilanthes cordifolia leaf extract. OpenNano, 14, 100188. https://doi.org/10.1016/j.onano.2023.100188