Echocardiographic prediction of outcome after cardiac resynchronization therapy: conventional methods and recent developments
Tóm tắt
Echocardiography plays an important role in patient assessment before cardiac resynchronization therapy (CRT) and can monitor many of its mechanical effects in heart failure patients. Encouraged by the highly variable individual response observed in the major CRT trials, echocardiography-based measurements of mechanical dyssynchrony have been extensively investigated with the aim of improving response prediction and CRT delivery. Despite recent setbacks, these techniques have continued to develop in order to overcome some of their initial flaws and limitations. This review discusses the concepts and rationale of the available echocardiographic techniques, highlighting newer quantification methods and discussing some of the unsolved issues that need to be addressed.
Tài liệu tham khảo
Prinzen FW, Hunter WC, Wyman BT et al (1999) Mapping of regional myocardial strain and work during ventricular pacing: experimental study using magnetic resonance imaging tagging. J Am Coll Cardiol 33(6):1735–1742
Vernooy K, Verbeek XA, Peschar M et al (2005) Left bundle branch block induces ventricular remodelling and functional septal hypoperfusion. Eur Heart J 26(1):91–98
Wyman BT, Hunter WC, Prinzen FW et al (2002) Effects of single- and biventricular pacing on temporal and spatial dynamics of ventricular contraction. Am J Physiol Heart Circ Physiol 282(1):H372–H379
Vernooy K, Cornelussen RN, Verbeek XA et al (2007) Cardiac resynchronization therapy cures dyssynchronopathy in canine left bundle-branch block hearts. Eur Heart J 28(17):2148–2155
Vanderheyden M, Mullens W, Delrue L et al (2008) Myocardial gene expression in heart failure patients treated with cardiac resynchronization therapy responders versus nonresponders. J Am Coll Cardiol 51(2):129–136
Abraham WT, Fisher WG, Smith AL et al (2002) Cardiac resynchronization in chronic heart failure. N Engl J Med 346(24):1845–1853
Cleland JG, Daubert JC, Erdmann E et al (2005) The effect of cardiac resynchronization on morbidity and mortality in heart failure. N Engl J Med 352(15):1539–1549
St John Sutton MG, Plappert T, Abraham WT et al (2003) Effect of cardiac resynchronization therapy on left ventricular size and function in chronic heart failure. Circulation 107(15):1985–1990
Moss AJ, Hall WJ, Cannom DS et al (2009) Cardiac-resynchronization therapy for the prevention of heart-failure events. N Engl J Med 361(14):1329–1338
St John Sutton MG, Ghio S, Plappert T et al (2009) Cardiac resynchronization induces major structural and functional reverse remodeling in patients with New York Heart Association class I/II heart failure. Circulation 120(19):1858–1865
Achilli A, Peraldo C, Sassara M et al (2006) Prediction of response to cardiac resynchronization therapy: the selection of candidates for CRT (SCART) study. Pacing Clin Electrophysiol 29(Suppl 2):S11–S19
Bax JJ, Bleeker GB, Marwick TH et al (2004) Left ventricular dyssynchrony predicts response and prognosis after cardiac resynchronization therapy. J Am Coll Cardiol 44(9):1834–1840
Bleeker GB, Kaandorp TA, Lamb HJ et al (2006) Effect of posterolateral scar tissue on clinical and echocardiographic improvement after cardiac resynchronization therapy. Circulation 113(7):969–976
Pitzalis MV, Iacoviello M, Romito R et al (2002) Cardiac resynchronization therapy tailored by echocardiographic evaluation of ventricular asynchrony. J Am Coll Cardiol 40(9):1615–1622
Suffoletto MS, Dohi K, Cannesson M et al (2006) Novel speckle-tracking radial strain from routine black-and-white echocardiographic images to quantify dyssynchrony and predict response to cardiac resynchronization therapy. Circulation 113(7):960–968
Yu CM, Zhang Q, Fung JW et al (2005) A novel tool to assess systolic asynchrony and identify responders of cardiac resynchronization therapy by tissue synchronization imaging. J Am Coll Cardiol 45(5):677–684
Chung ES, Leon AR, Tavazzi L et al (2008) Results of the Predictors of Response to CRT (PROSPECT) trial. Circulation 117(20):2608–2616
Beshai JF, Grimm RA, Nagueh SF et al (2007) Cardiac-resynchronization therapy in heart failure with narrow QRS complexes. N Engl J Med 357(24):2461–2471
Hawkins NM, Petrie MC, Burgess MI et al (2009) Selecting patients for cardiac resynchronization therapy: the fallacy of echocardiographic dyssynchrony. J Am Coll Cardiol 53(21):1944–1959
van der Land V, Germans T, van Dijk J et al (2007) The effect of left bundle branch block on left ventricular remodeling, dyssynchrony and deformation of the mitral valve apparatus: an observational cardiovascular magnetic resonance imaging study. Int J Cardiovasc Imaging 23(4):529–536
Duncan AM, Francis DP, Henein MY et al (2003) Limitation of cardiac output by total isovolumic time during pharmacologic stress in patients with dilated cardiomyopathy: activation-mediated effects of left bundle branch block and coronary artery disease. J Am Coll Cardiol 41(1):121–128
Cleland J, Freemantle N, Ghio S et al (2008) Predicting the long-term effects of cardiac resynchronization therapy on mortality from baseline variables and the early response a report from the CARE-HF (Cardiac Resynchronization in Heart Failure) Trial. J Am Coll Cardiol 52(6):438–445
Leclercq C, Faris O, Tunin R et al (2002) Systolic improvement and mechanical resynchronization does not require electrical synchrony in the dilated failing heart with left bundle-branch block. Circulation 106(14):1760–1763
Kirn B, Jansen A, Bracke F et al (2008) Mechanical discoordination rather than dyssynchrony predicts reverse remodeling upon cardiac resynchronization. Am J Physiol Heart Circ Physiol 295(2):H640–H646
Nelson GS, Curry CW, Wyman BT et al (2000) Predictors of systolic augmentation from left ventricular preexcitation in patients with dilated cardiomyopathy and intraventricular conduction delay. Circulation 101(23):2703–2709
Auricchio A, Ding J, Spinelli JC et al (2002) Cardiac resynchronization therapy restores optimal atrioventricular mechanical timing in heart failure patients with ventricular conduction delay. J Am Coll Cardiol 39(7):1163–1169
Jansen AH, van DJ, Bracke F et al (2007) Improvement in diastolic function and left ventricular filling pressure induced by cardiac resynchronization therapy. Am Heart J 153(5):843–849
Duncan AM, Lim E, Clague J et al (2006) Comparison of segmental and global markers of dyssynchrony in predicting clinical response to cardiac resynchronization. Eur Heart J 27(20):2426–2432
Yu CM, Chau E, Sanderson JE et al (2002) Tissue Doppler echocardiographic evidence of reverse remodeling and improved synchronicity by simultaneously delaying regional contraction after biventricular pacing therapy in heart failure. Circulation 105(4):438–445
Miyazaki C, Redfield MM, Powell BD et al (2010) Dyssynchrony indices to predict response to cardiac resynchronization therapy: a comprehensive prospective single-center study. Circ Heart Fail 3(5):565–573
Parsai C, Bijnens B, Sutherland GR et al (2009) Toward understanding response to cardiac resynchronization therapy: left ventricular dyssynchrony is only one of multiple mechanisms. Eur Heart J 30(8):940–949
Lafitte S, Reant P, Zaroui A et al (2009) Validation of an echocardiographic multiparametric strategy to increase responders patients after cardiac resynchronization: a multicentre study. Eur Heart J 30(23):2880–2887
Gorcsan J III, Abraham T, Agler DA et al (2008) Echocardiography for cardiac resynchronization therapy: recommendations for performance and reporting–a report from the American Society of Echocardiography Dyssynchrony Writing Group endorsed by the Heart Rhythm Society. J Am Soc Echocardiogr 21(3):191–213
Stanton T, Hawkins NM, Hogg KJ et al (2008) How should we optimize cardiac resynchronization therapy? Eur Heart J 29(20):2458–2472
Vernooy K, Verbeek XA, Cornelussen RN et al (2007) Calculation of effective VV interval facilitates optimization of AV delay and VV interval in cardiac resynchronization therapy. Heart Rhythm 4(1):75–82
Little WC, Reeves RC, Arciniegas J et al (1982) Mechanism of abnormal interventricular septal motion during delayed left ventricular activation. Circulation 65(7):1486–1491
Yu Y, Kramer A, Spinelli J et al (2003) Biventricular mechanical asynchrony predicts hemodynamic effect of uni- and biventricular pacing. Am J Physiol Heart Circ Physiol 285(6):H2788–H2796
Bleasdale RA, Turner MS, Mumford CE et al (2004) Left ventricular pacing minimizes diastolic ventricular interaction, allowing improved preload-dependent systolic performance. Circulation 110(16):2395–2400
Lumens J, Arts T, Broers B et al (2009) Right ventricular free wall pacing improves cardiac pump function in severe pulmonary arterial hypertension: a computer simulation analysis. Am J Physiol Heart Circ Physiol 297(6):H2196–H2205
Verbeek XA, Auricchio A, Yu Y et al (2006) Tailoring cardiac resynchronization therapy using interventricular asynchrony. Validation of a simple model. Am J Physiol Heart Circ Physiol 290(3):H968–H977
Ghio S, Freemantle N, Scelsi L et al (2009) Long-term left ventricular reverse remodelling with cardiac resynchronization therapy: results from the CARE-HF trial. Eur J Heart Fail 11(5):480–488
Richardson M, Freemantle N, Calvert MJ et al (2007) Predictors and treatment response with cardiac resynchronization therapy in patients with heart failure characterized by dyssynchrony: a pre-defined analysis from the CARE-HF trial. Eur Heart J 28(15):1827–1834
Penicka M, Bartunek J, De Bruyne B et al (2004) Improvement of left ventricular function after cardiac resynchronization therapy is predicted by tissue Doppler imaging echocardiography. Circulation 109(8):978–983
Marcus GM, Rose E, Viloria EM et al (2005) Septal to posterior wall motion delay fails to predict reverse remodeling or clinical improvement in patients undergoing cardiac resynchronization therapy. J Am Coll Cardiol 46(12):2208–2214
Pitzalis MV, Iacoviello M, Romito R et al (2005) Ventricular asynchrony predicts a better outcome in patients with chronic heart failure receiving cardiac resynchronization therapy. J Am Coll Cardiol 45(1):65–69
Diaz-Infante E, Sitges M, Vidal B et al (2007) Usefulness of ventricular dyssynchrony measured using M-mode echocardiography to predict response to resynchronization therapy. Am J Cardiol 100(1):84–89
Sogaard P, Egeblad H, Pedersen AK et al (2002) Sequential versus simultaneous biventricular resynchronization for severe heart failure: evaluation by tissue Doppler imaging. Circulation 106(16):2078–2084
Kapetanakis S, Kearney MT, Siva A et al (2005) Real-time three-dimensional echocardiography: a novel technique to quantify global left ventricular mechanical dyssynchrony. Circulation 112(7):992–1000
Marsan NA, Bleeker GB, Ypenburg C et al (2008) Real-time three-dimensional echocardiography as a novel approach to assess left ventricular and left atrium reverse remodeling and to predict response to cardiac resynchronization therapy. Heart Rhythm 5(9):1257–1264
Soliman OI, Geleijnse ML, Theuns DA et al (2009) Usefulness of left ventricular systolic dyssynchrony by real-time three-dimensional echocardiography to predict long-term response to cardiac resynchronization therapy. Am J Cardiol 103(11):1586–1591
Burgess MI, Jenkins C, Chan J et al (2007) Measurement of left ventricular dyssynchrony in patients with ischaemic cardiomyopathy: a comparison of real-time three-dimensional and tissue Doppler echocardiography. Heart 93(10):1191–1196
Soliman OI, Theuns DA, Geleijnse ML et al (2007) Spectral pulsed-wave tissue Doppler imaging lateral-to-septal delay fails to predict clinical or echocardiographic outcome after cardiac resynchronization therapy. Europace 9(2):113–118
Gorcsan J III, Kanzaki H, Bazaz R et al (2004) Usefulness of echocardiographic tissue synchronization imaging to predict acute response to cardiac resynchronization therapy. Am J Cardiol 93(9):1178–1181
Gorcsan J III, Tanabe M, Bleeker GB et al (2007) Combined longitudinal and radial dyssynchrony predicts ventricular response after resynchronization therapy. J Am Coll Cardiol 50(15):1476–1483
Van de Veire NR, Yu CM, Ajmone-Marsan N et al (2008) Triplane tissue Doppler imaging: a novel three-dimensional imaging modality that predicts reverse left ventricular remodelling after cardiac resynchronisation therapy. Heart 94(3):e9
Yu CM, Fung WH, Lin H et al (2003) Predictors of left ventricular reverse remodeling after cardiac resynchronization therapy for heart failure secondary to idiopathic dilated or ischemic cardiomyopathy. Am J Cardiol 91(6):684–688
Yu CM, Fung JW, Zhang Q et al (2004) Tissue Doppler imaging is superior to strain rate imaging and postsystolic shortening on the prediction of reverse remodeling in both ischemic and nonischemic heart failure after cardiac resynchronization therapy. Circulation 110(1):66–73
Yu CM, Gorcsan J III, Bleeker GB et al (2007) Usefulness of tissue Doppler velocity and strain dyssynchrony for predicting left ventricular reverse remodeling response after cardiac resynchronization therapy. Am J Cardiol 100(8):1263–1270
De Boeck BW, Meine M, Leenders GE et al (2008) Practical and conceptual limitations of tissue Doppler imaging to predict reverse remodelling in cardiac resynchronisation therapy. Eur J Heart Fail 10(3):281–290
Ansalone G, Giannantoni P, Ricci R et al (2002) Doppler myocardial imaging to evaluate the effectiveness of pacing sites in patients receiving biventricular pacing. J Am Coll Cardiol 39(3):489–499
Seo Y, Ishizu T, Sakamaki F et al (2009) Analysis of the origin of cardiac wall motion that constitutes myocardial velocity-time curves in patients with left bundle branch block. J Am Soc Echocardiogr 22(4):331–336
Anderson LJ, Miyazaki C, Sutherland GR et al (2008) Patient selection and echocardiographic assessment of dyssynchrony in cardiac resynchronization therapy. Circulation 117(15):2009–2023
Breithardt OA, Stellbrink C, Herbots L et al (2003) Cardiac resynchronization therapy can reverse abnormal myocardial strain distribution in patients with heart failure and left bundle branch block. J Am Coll Cardiol 42(3):486–494
Miyazaki C, Powell BD, Bruce CJ et al (2008) Comparison of echocardiographic dyssynchrony assessment by tissue velocity and strain imaging in subjects with or without systolic dysfunction and with or without left bundle-branch block. Circulation 117(20):2617–2625
Russell K, Opdahl A, Remme EW et al (2010) Evaluation of left ventricular dyssynchrony by onset of active myocardial force generation: a novel method that differentiates between electrical and mechanical etiologies. Circ Cardiovasc Imaging 3(4):405–414
Teske AJ, De Boeck BW, Melman PG et al (2007) Echocardiographic quantification of myocardial function using tissue deformation imaging, a guide to image acquisition and analysis using tissue Doppler and speckle tracking. Cardiovasc Ultrasound 5:27
Tanaka H, Hara H, Saba S et al (2010) Usefulness of three-dimensional speckle tracking strain to quantify dyssynchrony and the site of latest mechanical activation. Am J Cardiol 105(2):235–242
Delgado V, Ypenburg C, Van Bommel RJ et al (2008) Assessment of left ventricular dyssynchrony by speckle tracking strain imaging comparison between longitudinal, circumferential, and radial strain in cardiac resynchronization therapy. J Am Coll Cardiol 51(20):1944–1952
McDonald IG (1973) Echocardiographic demonstration of abnormal motion of the interventricular septum in left bundle branch block. Circulation 48(2):272–280
Voigt JU, Schneider TM, Korder S et al (2009) Apical transverse motion as surrogate parameter to determine regional left ventricular function inhomogeneities: a new, integrative approach to left ventricular asynchrony assessment. Eur Heart J 30(8):959–968
Jansen AH, van Dantzig JM, Bracke F et al (2007) Qualitative observation of left ventricular multiphasic septal motion and septal-to-lateral apical shuffle predicts left ventricular reverse remodeling after cardiac resynchronization therapy. Am J Cardiol 99(7):966–969
Bilchick KC, Dimaano V, Wu KC et al (2008) Cardiac magnetic resonance assessment of dyssynchrony and myocardial scar predicts function class improvement following cardiac resynchronization therapy. JACC Cardiovasc Imaging 1(5):561–568
Breithardt OA, Stellbrink C, Kramer AP et al (2002) Echocardiographic quantification of left ventricular asynchrony predicts an acute hemodynamic benefit of cardiac resynchronization therapy. J Am Coll Cardiol 40(3):536–545
Buss SJ, Humpert PM, Bekeredjian R et al (2009) Echocardiographic phase imaging to predict reverse remodeling after cardiac resynchronization therapy. JACC Cardiovasc Imaging 2(5):535–543
Helm RH, Leclercq C, Faris OP et al (2005) Cardiac dyssynchrony analysis using circumferential versus longitudinal strain: implications for assessing cardiac resynchronization. Circulation 111(21):2760–2767
Lardo AC, Abraham TP, Kass DA (2005) Magnetic resonance imaging assessment of ventricular dyssynchrony: current and emerging concepts. J Am Coll Cardiol 46(12):2223–2228
Bertola B, Rondano E, Sulis M et al (2009) Cardiac dyssynchrony quantitated by time-to-peak or temporal uniformity of strain at longitudinal, circumferential, and radial level: implications for resynchronization therapy. J Am Soc Echocardiogr 22(6):665–671
Ascione L, Iengo R, Accadia M et al (2008) A radial global dyssynchrony index as predictor of left ventricular reverse remodeling after cardiac resynchronization therapy. Pacing Clin Electrophysiol 31(7):819–827
Wang CL, Wu CT, Yeh YH et al (2010) Recoordination rather than resynchronization predicts reverse remodeling after cardiac resynchronization therapy. J Am Soc Echocardiogr 23(6):611–620
De Boeck BW, Teske AJ, Meine M et al (2009) Septal rebound stretch reflects the functional substrate to cardiac resynchronization therapy and predicts volumetric and neurohormonal response. Eur J Heart Fail 11(9):863–871
De Boeck BW, Teske AJ, Leenders GE et al (2010) Detection and quantification by deformation imaging of the functional impact of septal compared to free wall preexcitation in the Wolff-Parkinson-White Syndrome. Am J Cardiol 106(4):539–546
Wyman BT, Hunter WC, Prinzen FW et al (1999) Mapping propagation of mechanical activation in the paced heart with MRI tagging. Am J Physiol 276(3 Pt 2):H881–H891
Rutz AK, Manka R, Kozerke S et al (2009) Left ventricular dyssynchrony in patients with left bundle branch block and patients after myocardial infarction: integration of mechanics and viability by cardiac magnetic resonance. Eur Heart J 30(17):2117–2127
Skulstad H, Edvardsen T, Urheim S et al (2002) Postsystolic shortening in ischemic myocardium: active contraction or passive recoil? Circulation 106(6):718–724
Lim P, Buakhamsri A, Popovic ZB et al (2008) Longitudinal strain delay index by speckle tracking imaging: a new marker of response to cardiac resynchronization therapy. Circulation 118(11):1130–1137
Abe Y, Yagishita D, Tagawa Y et al (2010) A novel echocardiographic index of inefficient left ventricular contraction resulting from mechanical dyssynchrony. J Cardiol 55(2):248–255
Kerckhoffs RC, Omens JH, McCulloch AD et al (2010) Ventricular dilation and electrical dyssynchrony synergistically increase regional mechanical nonuniformity but not mechanical dyssynchrony: a computational model. Circ Heart Fail 3(4):528–536
Parsai C, Baltabaeva A, Anderson L et al (2009) Low-dose dobutamine stress echo to quantify the degree of remodelling after cardiac resynchronization therapy. Eur Heart J 30(8):950–958
De Boeck BW, Kirn B, Teske AJ et al (2008) Three-dimensional mapping of mechanical activation patterns, contractile dyssynchrony and dyscoordination by two-dimensional strain echocardiography: rationale and design of a novel software toolbox. Cardiovasc Ultrasound 6:22
Sengupta PP, Khandheria BK, Korinek J et al (2006) Apex-to-base dispersion in regional timing of left ventricular shortening and lengthening. J Am Coll Cardiol 47(1):163–172
Tanaka H, Nesser HJ, Buck T et al (2010) Dyssynchrony by speckle-tracking echocardiography and response to cardiac resynchronization therapy: results of the Speckle Tracking and Resynchronization (STAR) study. Eur Heart J 31(14):1690–1700
Waldman LK, Nosan D, Villarreal F et al (1988) Relation between transmural deformation and local myofiber direction in canine left ventricle. Circ Res 63(3):550–562
Mele D, Agricola E, Galderisi M et al (2009) Echocardiographic myocardial scar burden predicts response to cardiac resynchronization therapy in ischemic heart failure. J Am Soc Echocardiogr 22(6):702–708
White JA, Yee R, Yuan X et al (2006) Delayed enhancement magnetic resonance imaging predicts response to cardiac resynchronization therapy in patients with intraventricular dyssynchrony. J Am Coll Cardiol 48(10):1953–1960
Marsan NA, Westenberg JJ, Ypenburg C et al (2009) Magnetic resonance imaging and response to cardiac resynchronization therapy: relative merits of left ventricular dyssynchrony and scar tissue. Eur Heart J 30(19):2360–2367
Rademakers LM, van KR, van Deursen CJ et al (2010) Myocardial infarction does not preclude electrical and hemodynamic benefits of cardiac resynchronization therapy in dyssynchronous canine hearts. Circ Arrhythm Electrophysiol 3(4):361–368
Becker M, Kramann R, Franke A et al (2007) Impact of left ventricular lead position in cardiac resynchronization therapy on left ventricular remodelling. A circumferential strain analysis based on 2D echocardiography. Eur Heart J 28(10):1211–1220
Yu CM, Chan YS, Zhang Q et al (2006) Benefits of cardiac resynchronization therapy for heart failure patients with narrow QRS complexes and coexisting systolic asynchrony by echocardiography. J Am Coll Cardiol 48(11):2251–2257
Yu CM, Bleeker GB, Fung JW et al (2005) Left ventricular reverse remodeling but not clinical improvement predicts long-term survival after cardiac resynchronization therapy. Circulation 112(11):1580–1586
Solomon SD, Foster E, Bourgoun M et al (2010) Effect of cardiac resynchronization therapy on reverse remodeling and relation to outcome: multicenter automatic defibrillator implantation trial: cardiac resynchronization therapy. Circulation 122(10):985–992
Wikstrom G, Blomstrom-Lundqvist C, Andren B et al (2009) The effects of aetiology on outcome in patients treated with cardiac resynchronization therapy in the CARE-HF trial. Eur Heart J 30(7):782–788
Fruhwald FM, Fahrleitner-Pammer A, Berger R et al (2007) Early and sustained effects of cardiac resynchronization therapy on N-terminal pro-B-type natriuretic peptide in patients with moderate to severe heart failure and cardiac dyssynchrony. Eur Heart J 28(13):1592–1597
Fornwalt BK, Sprague WW, BeDell P et al (2010) Agreement is poor among current criteria used to define response to cardiac resynchronization therapy. Circulation 121(18):1985–1991
Prinzen FW, Vernooy K, DeBoeck BWL et al (in press) Mechano-energetics of the asynchronous and resynchronized heart. Heart Fail Rev. doi:10.1007/s10741-010-9205-3
Vanderheyden M, Vrints C, Bartunek J (in press) The molecular fingerprint of cardiac dyssynchrony and cardiac resynchronization therapy. Heart Fail Rev. doi:10.1007/s10741-010-9199-x
Leyva F, Foley P (in review) Current and future role of cardiovascular magnetic resonance in cardiac resynchronization therapy. Heart Fail Rev