Earthworm‐induced N mineralization in fertilized grassland increases both N2O emission and crop‐N uptake

European Journal of Soil Science - Tập 62 Số 1 - Trang 152-161 - 2011
Ingrid M. Lubbers1, L. Brussaard1, Wilfred Otten2, Jan Willem van Groenigen1
1Department of Soil Quality, Wageningen University, PO Box 47, 6700AA Wageningen, The Netherlands
2SIMBIOS, University of Abertay Dundee, DD11HG Dundee, UK

Tóm tắt

Earthworms can increase plant nitrogen (N) availability by stimulating mineralization of organic matter. However, recent studies show that they can also cause elevated emission of the greenhouse gas nitrous oxide (N2O). It is unclear to what extent these two effects occur in fertilized grasslands, where earthworm densities are typically greatest. The aims of this study were therefore to (i) quantify the effects of earthworm activity on N uptake and N2O emissions in fertilized grasslands and (ii) link these effects to earthworm functional groups. In a 73‐day factorial mesocosm experiment, combinations of Lumbricus rubellus (Lr, epigeic), Aporrectodea longa (Al, anecic) and Aporrectodea caliginosa (Ac, endogeic) individuals were introduced into columns with grass growing on a fertilized (250 kg N ha−1) loamy soil. Introduction of Lr resulted in 50.8% (P < 0.001) larger N2O emissions and 5.4% (P = 0.032) larger grass biomass. Grass‐N uptake increased from 172 to 188 kg N ha−1 in the presence of Lr (P < 0.001), from 176 to 183 kg N ha−1 in the presence of Ac (P = 0.001), and from 168 to 199 kg N ha−1 when all three earthworm species were present (P = 0.006). Lr increased soil NH4+‐N concentrations (P = 0.010), further indicating enhanced mineralization of N caused by earthworm activity. We conclude that the previously observed beneficial effect of earthworm presence on plant‐N availability has a negative side‐effect: increased emissions of the mineralized N as N2O.

Từ khóa


Tài liệu tham khảo

10.1016/j.soilbio.2006.09.015

10.1016/S0038-0717(96)00098-3

10.1016/S0038-0717(96)00042-9

10.1007/s003740000228

10.1007/s003740050505

10.1016/S1164-5563(00)01062-1

10.1016/0038-0717(92)90014-O

10.1007/s003740050010

10.1016/j.pedobi.2006.09.001

10.1016/S1164-5563(02)01132-9

10.1016/0038-0717(95)00157-3

10.1016/S1573-5214(03)80029-5

10.1111/j.1365-2389.2009.01164.x

10.1007/s003740000297

10.1146/annurev.micro.61.080706.093139

Edwards C.A., 2004, Earthworm Ecology., 10.1201/9781420039719

10.2136/sssaj1986.03615995005000030017x

10.1016/j.agee.2006.11.004

10.1016/j.soilbio.2007.11.013

10.1007/s00374-009-0393-8

10.1071/SR00033

10.1007/s10530-006-9019-3

10.1016/j.soilbio.2009.12.015

10.1890/05-2003.1

10.1007/978-94-009-5965-1_8

10.1128/AEM.69.3.1662-1669.2003

10.1111/j.1461-9563.2006.00315.x

10.1016/S0929-1393(03)00072-6

10.1016/j.soilbio.2005.08.017

Lee D.S., 1997, Gaseous Nitrogen Emissions from Grasslands, 353

Lee K.E., 1985, Earthworms, their Ecology and Relationships with Soils and Land Use.

10.1007/BF00317626

MNP, 2007, Werking van de meststoffenwet 2006.

10.1007/s10705-004-7354-2

Otten W., 2009, Multitrophic Interactions in Soil, 131

Parmelee R.W., 1988, Earthworm production and role in the nitrogen‐cycle of a no‐tillage agroecosystem on the Georgia Piedmont., Pedobiologia, 32, 355, 10.1016/S0031-4056(23)00251-2

10.1016/S0038-0717(00)00018-3

10.1016/j.pedobi.2006.02.001

10.1016/j.apsoil.2004.10.003

10.1016/j.soilbio.2007.03.008

10.2136/sssaj2002.1981

10.1016/j.apsoil.2007.08.009

10.1007/BF00395461

10.1016/S0038-0717(96)00044-2

USDA (SSS), 1999, Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys.

10.1016/j.soilbio.2004.08.009

10.1016/j.ejsobi.2007.08.052

10.1023/A:1021259107244

10.1016/S0038-0717(01)00096-7

Young I.M., 2008, Advances in Agronomy, 81