Earthquake Resistance Assessment of Buried Pipelines of Complex Configuration Based on Records of Real Earthquakes
Tóm tắt
Từ khóa
Tài liệu tham khảo
T. R. Rashidov, Dynamical Theory of the Earthquake Resistance of Complex Systems of Buried Structures, Fan, Tashkent (1973).
T. R. Rashidov and D. A. Bekmirzaev, “Seismodynamics of pipelines interacting with the soil,” Soil Mech. Found. Eng., 52, No. 3, 149-154 (2015).
T. R. Rashidov, T. Yuldashev, and D. A. Bekmirzaev, “Seismodynamics of underground pipelines with arbitrary direction of seismic loading,” Soil Mech. Found. Eng., 55, No. 4, 243-247 (2015).
D. A. Bekmirzaev and I. Mirzaev, “Dynamic processes in underground pipelines of complex orthogonal configuration at different incidence angles of seismic effect,” Int. J. Sci. Techn. Res., 9, No. 4, 2449-2453 (2020).
D. A. Bekmirzaev, N. Sh. Mansurova, N. A. Nishonov, E. A. Kosimov, and A. T. Numonov, “Underground pipelines dynamics problem solution under longitudinal seismic loading,” IOP Conference Series: Materials Science and Engineering, No. 883, 012045 (2020).
N. A. Nishonov, D. A. Bekmirzaev, E. V. An, Z. Urazmukhamedova, and K. Turajonov, “Behaviour and calculation of polymer pipelines under real earthquake records,” IOP Conference Series: Materials Science and Engineering, No. 869, 052076 (2020).
D. Ha, T. H. Abdoun, M. J. O'Rourke, and M. D. Symans, “Centrifuge modeling of earthquake effects on buried high-density polyethylene (HDPE) pipelines crossing fault zones,” Geotech. Geoenviron. Eng., 134, No.10, 1501-1515 (2008).
S. Sarioletlagh, M. Nekooei , A. V. Oskouei, and A. Aziminejad, “Experimental and numerical modeling of horizontally-bent buried pipelines crossing fault slip,” Latin American J. Solids .Struct., 16, No. 3, 1-16 (2019).
K. Ishihara, Soil Behavior During Earthquakes, Georekonstruktsiya-fundamentproekt NPO, St. Petersburg (2006).
E. E. Khachiyan, Applied Seismology, Gitutyun, Erevan (2008).
A. R. Valeev and D. V. Yalalov, “Analysis of methods of earthquake protection of main pipelines,” Transport i khranenie nefteproduktov i uglevodorodnogo syr'ya, No. 3, 38-42 (2017).
D. A. Bekmirzaev, R. U. Kishanov, and N. Sh. Mansurova, “Mathematical simulation and solution of the problem of seismo-dynamics of underground pipelines,” Int. J. Emerging Trends Eng. Res., 8, No. 9, 5028-5033 (2020).
T. R. Rashidov and D. A. Bekmirzaev, “Seismodynamic problems of buried pipelines of complex configuration,” Seismostokoe stroitelstvo. Bezopastnost' sooruzhenii, No. 3, 33-37 (2015).
D. A. Bekmirzaev, I. Mirzaev, N. Sh. Mansurova, E. A. Kosimov, and D. P. Juraev, “Numerical methods in the study of seismic dynamics of underground pipelines,” IOP Conference Series: Materials Science and Engineering, No. 869, 052035 (2020).
M. Saberi, F. Behnamfar, and M. Vafaeian, “A continuum shell-beam finite element modeling of buried pipes with 90-degree elbow subjected to earthquake excitations,” Int. J. Eng. (IJE), Transactions C: Aspects., 28, No. 3, 338-349 (2015).
M. Saberi, H. Arabzadeh, and A. Keshavarz, “Numerical analysis of buried pipelines with right angle elbow under wave propagation,” Procedia Eng., 14, 3260-3267 (2011).
V. I. Myachenkov et al., Handbook of Calculations of Machinebuilding Structures by the Method of Finite Elements, Mashinostroenie, Moscow (1989).
M. A. Dudaev, “Stiffness matrix of a Timoshenko beam in finite-element analysis of the dynamic behavior of rotary turbomachines,” Vest. IrGTU, No. 6(89), 59-65 (2014).
O. Zenkevich and K. Morgan, Finite Elements and Approximation [Russian translation], Mir, Moscow (1986).