Earth-abundant inorganic electrocatalysts and their nanostructures for energy conversion applications

Energy and Environmental Science - Tập 7 Số 11 - Trang 3519-3542
Matthew S. Faber1,2,3, Song Jin1,2,3
1Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, USA
2Madison, USA
3University of Wisconsin-Madison

Tóm tắt

Various classes of earth-abundant inorganic electrocatalysts for energy conversion are surveyed and their recent and ongoing development is discussed.

Từ khóa


Tài liệu tham khảo

Lewis, 2006, Proc. Natl. Acad. Sci. U. S. A., 103, 15729, 10.1073/pnas.0603395103

Saga, 2010, NPG Asia Mater., 2, 96, 10.1038/asiamat.2010.82

Grätzel, 2001, Nature, 414, 338, 10.1038/35104607

Best Research-Cell Efficiencies, http://www.nrel.gov/ncpv/images/efficiency_chart.jpg , accessed June 2014

Lewis, 2007, Science, 315, 798, 10.1126/science.1137014

Wolden, 2011, J. Vac. Sci. Technol., A, 29, 030801, 10.1116/1.3569757

Graetzel, 2012, Nature, 488, 304, 10.1038/nature11476

Hagfeldt, 2010, Chem. Rev., 110, 6595, 10.1021/cr900356p

Rühle, 2010, ChemPhysChem, 11, 2290, 10.1002/cphc.201000069

Kamat, 2013, J. Phys. Chem. Lett., 4, 908, 10.1021/jz400052e

Selinsky, 2013, Chem. Soc. Rev., 42, 2963, 10.1039/C2CS35374A

Sargent, 2012, Nat. Photonics, 6, 133, 10.1038/nphoton.2012.33

Nelson, 2011, Mater. Today, 14, 462, 10.1016/S1369-7021(11)70210-3

Todorov, 2010, Eur. J. Inorg. Chem., 17, 10.1002/ejic.200900837

Snaith, 2013, J. Phys. Chem. Lett., 4, 3623, 10.1021/jz4020162

Boix, 2014, Mater. Today, 17, 16, 10.1016/j.mattod.2013.12.002

Szczech, 2011, Energy Environ. Sci., 4, 56, 10.1039/C0EE00281J

Goodenough, 2010, Chem. Mater., 22, 587, 10.1021/cm901452z

Cook, 2010, Chem. Rev., 110, 6474, 10.1021/cr100246c

Turner, 2004, Science, 305, 972, 10.1126/science.1103197

Chen, 2010, Chem. Rev., 110, 6503, 10.1021/cr1001645

McKone, 2014, Chem. Mater., 26, 407, 10.1021/cm4021518

Benson, 2009, Chem. Soc. Rev., 38, 89, 10.1039/B804323J

Roy, 2010, ACS Nano, 4, 1259, 10.1021/nn9015423

Appel, 2013, Chem. Rev., 113, 6621, 10.1021/cr300463y

Srinivasan, 1999, Annu. Rev. Energy, 24, 281, 10.1146/annurev.energy.24.1.281

Gewirth, 2010, Inorg. Chem., 49, 3557, 10.1021/ic9022486

Walter, 2010, Chem. Rev., 110, 6446, 10.1021/cr1002326

Nocera, 2012, Acc. Chem. Res., 45, 767, 10.1021/ar2003013

Ran, Chem. Soc. Rev., 10.1039/C3CS60425J

Pinaud, 2013, Energy Environ. Sci., 6, 1983, 10.1039/c3ee40831k

Pletcher, 1984, J. Appl. Electrochem., 14, 403, 10.1007/BF00610805

Vesborg, 2012, RSC Adv., 2, 7933, 10.1039/c2ra20839c

McKone, 2014, Chem. Sci., 5, 865, 10.1039/C3SC51711J

Zhu, 2013, Nanoscale, 5, 1753, 10.1039/c2nr33839d

Gong, 2009, Science, 323, 760, 10.1126/science.1168049

Cheng, 2013, Sci. Rep., 3, 3195, 10.1038/srep03195

Malinauskas, 1999, Synth. Met., 107, 75, 10.1016/S0379-6779(99)00170-8

Chen, 2011, Energy Environ. Sci., 4, 3167, 10.1039/c0ee00558d

Esswein, 2007, Chem. Rev., 107, 4022, 10.1021/cr050193e

Artero, 2005, Coord. Chem. Rev., 249, 1518, 10.1016/j.ccr.2005.01.014

Artero, 2011, Angew. Chem., Int. Ed., 50, 7238, 10.1002/anie.201007987

Dempsey, 2009, Acc. Chem. Res., 42, 1995, 10.1021/ar900253e

Du, 2012, Energy Environ. Sci., 5, 6012, 10.1039/c2ee03250c

Finn, 2012, Chem. Commun., 48, 1392, 10.1039/C1CC15393E

Thoi, 2013, Chem. Soc. Rev., 42, 2388, 10.1039/C2CS35272A

Bockris, 1952, J. Electrochem. Soc., 99, 169, 10.1149/1.2779692

Stephens, 2012, Energy Environ. Sci., 5, 6744, 10.1039/c2ee03590a

A. J. Bard and L. R.Faulkner , Electrochemical Methods: Fundamentals and Applications , Wiley , New York , 2001

Faber, 2014, J. Am. Chem. Soc., 136, 10053, 10.1021/ja504099w

Lukowski, 2014, Energy Environ. Sci., 7, 2608, 10.1039/C4EE01329H

McCrory, 2013, J. Am. Chem. Soc., 135, 16977, 10.1021/ja407115p

Wu, 2012, ChemSusChem, 5, 1343, 10.1002/cssc.201100676

Hou, 2013, Nat. Commun., 4, 10.1038/ncomms2547

Wu, 2014, J. Phys. Chem. C, 118, 16727, 10.1021/jp412713h

Parsons, 1958, Trans. Faraday Soc., 54, 1053, 10.1039/tf9585401053

Nørskov, 2005, J. Electrochem. Soc., 152, J23, 10.1149/1.1856988

Nørskov, 2004, J. Phys. Chem. B, 108, 17886, 10.1021/jp047349j

Transition Metal Sulphides: Chemistry and Catalysis , ed. T.Weber , R.Prins and R. A.van Santen , Kluwer Academic Publishers , Dordrecht , 1998

Alexander, 2010, Chem. Soc. Rev., 39, 4388, 10.1039/b916787k

Chianelli, 2002, Appl. Catal., A, 227, 83, 10.1016/S0926-860X(01)00924-3

Metal Oxide Catalysis , ed. S. D.Jackson and J. S. J.Hargreaves , Wiley-VCH , Weinheim , 2009

R. P. F. Gregory , Biochemistry of Photosynthesis , Wiley-Interscience , New York , 1989

Andreiadis, 2013, Nat. Chem., 5, 48, 10.1038/nchem.1481

Jaramillo, 2008, J. Phys. Chem. C, 112, 17492, 10.1021/jp802695e

Hou, 2011, Nat. Mater., 10, 434, 10.1038/nmat3008

Hodes, 1980, J. Electrochem. Soc., 127, 544, 10.1149/1.2129709

Trasatti, 1972, J. Electroanal. Chem., 39, 163, 10.1016/S0022-0728(72)80485-6

Miles, 1975, J. Electroanal. Chem., 60, 89, 10.1016/S0022-0728(75)80205-1

Kuhn, 1972, J. Electroanal. Chem., 34, 1, 10.1016/S0022-0728(72)80496-0

Highfield, 1999, Electrochim. Acta, 44, 2805, 10.1016/S0013-4686(98)00403-4

Jaksic, 2001, Int. J. Hydrogen Energy, 26, 559, 10.1016/S0360-3199(00)00120-8

Greeley, 2006, ChemPhysChem, 7, 1032, 10.1002/cphc.200500663

Greeley, 2009, Nat. Chem., 1, 552, 10.1038/nchem.367

Brooman, 1974, J. Electroanal. Chem., 49, 325, 10.1016/S0022-0728(74)80165-8

Brown, 1982, Int. J. Hydrogen Energy, 7, 405, 10.1016/0360-3199(82)90051-9

Brown, 1984, Electrochim. Acta, 29, 1551, 10.1016/0013-4686(84)85008-2

Navarro-Flores, 2005, J. Mol. Catal. A: Chem., 226, 179, 10.1016/j.molcata.2004.10.029

McKone, 2013, ACS Catal., 3, 166, 10.1021/cs300691m

McKone, 2011, Energy Environ. Sci., 4, 3573, 10.1039/c1ee01488a

Warren, 2012, Energy Environ. Sci., 5, 9653, 10.1039/c2ee23192a

Conway, 1986, Int. J. Hydrogen Energy, 11, 533, 10.1016/0360-3199(86)90020-0

Raj, 1992, Int. J. Hydrogen Energy, 17, 413

Reece, 2011, Science, 334, 645, 10.1126/science.1209816

S. Trasatti , Electrodes of Conductive Metallic Oxides , Elsevier Scientific Pub. Co. , 1980

Cheng, 2010, Chem. Mater., 22, 898, 10.1021/cm901698s

Cheng, 2011, Nat. Chem., 3, 79, 10.1038/nchem.931

Maiyalagan, 2014, Nat. Commun., 5, 10.1038/ncomms4949

Suntivich, 2011, Nat. Chem., 3, 546, 10.1038/nchem.1069

Liang, 2013, J. Am. Chem. Soc., 135, 2013, 10.1021/ja3089923

Liang, 2011, Nat. Mater., 10, 780, 10.1038/nmat3087

Gao, 2010, J. Mater. Chem., 20, 9355, 10.1039/c0jm01547d

Xu, 2013, Angew. Chem., Int. Ed., 52, 8546, 10.1002/anie.201303495

Ohnishi, 2008, Chem. Lett., 37, 838, 10.1246/cl.2008.838

Lin, 2011, Chem. Commun., 47, 11489, 10.1039/c1cc14973c

Wilson, 1969, Adv. Phys., 18, 193, 10.1080/00018736900101307

Jaegermann, 1988, Prog. Surf. Sci., 29, 1, 10.1016/0079-6816(88)90015-9

Gerischer, 1975, J. Electroanal. Chem. Interfacial Electrochem., 58, 263, 10.1016/S0022-0728(75)80359-7

Hodes, 1976, Nature, 261, 403, 10.1038/261403a0

Miller, 1976, Nature, 262, 680, 10.1038/262680a0

Ellis, 1976, J. Am. Chem. Soc., 98, 1635, 10.1021/ja00422a087

Allen, 1957, Trans. Faraday Soc., 53, 1626, 10.1039/TF9575301626

Loučka, 1972, J. Electroanal. Chem., 36, 369, 10.1016/S0022-0728(72)80259-6

Radich, 2011, J. Phys. Chem. Lett., 2, 2453, 10.1021/jz201064k

Radich, 2014, J. Phys. Chem. C, 118, 16463, 10.1021/jp4113365

Chhowalla, 2013, Nat. Chem., 5, 263, 10.1038/nchem.1589

Yang, 2014, J. Mater. Chem. A, 2, 5979, 10.1039/C3TA14151A

Merki, 2011, Energy Environ. Sci., 4, 3878, 10.1039/c1ee01970h

Laursen, 2012, Energy Environ. Sci., 5, 5577, 10.1039/c2ee02618j

Hinnemann, 2005, J. Am. Chem. Soc., 127, 5308, 10.1021/ja0504690

Jaramillo, 2007, Science, 317, 100, 10.1126/science.1141483

Bonde, 2008, Faraday Discuss., 140, 219, 10.1039/B803857K

Karunadasa, 2012, Science, 335, 698, 10.1126/science.1215868

Tenne, 2010, Chem. Soc. Rev., 39, 1423, 10.1039/B901466G

Li, 2011, J. Am. Chem. Soc., 133, 7296, 10.1021/ja201269b

Lukowski, 2013, J. Am. Chem. Soc., 135, 10274, 10.1021/ja404523s

Voiry, 2013, Nat. Mater., 12, 850, 10.1038/nmat3700

Kong, 2013, Nano Lett., 13, 1341, 10.1021/nl400258t

Wang, 2013, Proc. Natl. Acad. Sci. U. S. A., 110, 19701, 10.1073/pnas.1316792110

Xie, 2013, Adv. Mater., 25, 5807, 10.1002/adma.201302685

Xie, 2013, J. Am. Chem. Soc., 135, 17881, 10.1021/ja408329q

Chung, 2014, Nanoscale, 6, 2131, 10.1039/C3NR05228A

Zheng, 2014, Chem. Mater., 26, 2344, 10.1021/cm500347r

Lu, 2014, Adv. Mater., 26, 2683, 10.1002/adma.201304759

Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439

Wang, 2013, Electrochem. Commun., 34, 219, 10.1016/j.elecom.2013.06.018

Ding, 2014, J. Am. Chem. Soc., 136, 8504, 10.1021/ja5025673

Wu, 2012, Appl. Catal., B, 125, 59, 10.1016/j.apcatb.2012.05.013

Lin, Adv. Energy Mater., 10.1002/aenm.201301875

Wang, 2013, Nano Lett., 13, 3426, 10.1021/nl401944f

Lai, 2012, J. Mater. Chem., 22, 19, 10.1039/C1JM13879K

Gao, 2013, Chem. Soc. Rev., 42, 2986, 10.1039/c2cs35310e

Huang, 2013, Chem. Soc. Rev., 42, 1934, 10.1039/c2cs35387c

Morales-Guio, 2014, Chem. Soc. Rev., 43, 6555, 10.1039/C3CS60468C

Guo, 2013, J. Mater. Chem. A, 1, 11874, 10.1039/c3ta12349a

Ji, 2014, Mater. Lett., 123, 51, 10.1016/j.matlet.2014.02.080

Finn, 2014, Adv. Energy Mater., 10.1002/aenm.201400495

Faber, 2013, J. Phys. Chem. Lett., 4, 1843, 10.1021/jz400642e

Faber, 2014, J. Phys. Chem. C, 118, 10.1021/jp506288w

Duan, 2013, Electrochim. Acta, 114, 173, 10.1016/j.electacta.2013.10.045

Huang, 2013, J. Mater. Chem. A, 1, 11828, 10.1039/c3ta12347b

Wang, 2013, Angew. Chem., Int. Ed., 52, 6694, 10.1002/anie.201300401

Cabán-Acevedo, 2012, Nano Lett., 12, 1977, 10.1021/nl2045364

Cabán-Acevedo, 2013, ACS Nano, 7, 1731, 10.1021/nn305833u

Peng, 2014, Adv. Funct. Mater., 24, 2155, 10.1002/adfm.201303273

Baresel, 1974, Ber. Bunsen-Ges., 78, 608, 10.1002/bbpc.19740780616

Susac, 2007, J. Phys. Chem. C, 111, 18715, 10.1021/jp073395i

Zhu, 2008, J. Catal., 258, 235, 10.1016/j.jcat.2008.06.016

Zhu, 2010, Appl. Catal., A, 386, 157, 10.1016/j.apcata.2010.07.048

Jirkovský, 2012, J. Phys. Chem. C, 116, 24436, 10.1021/jp307669k

Zhao, 2013, J. Mater. Chem. A, 1, 5741, 10.1039/c3ta10296c

Kibsgaard, 2014, Nat. Chem., 6, 248, 10.1038/nchem.1853

Ivanovskaya, 2013, Langmuir, 29, 480, 10.1021/la3032489

Kong, 2014, J. Am. Chem. Soc., 136, 4897, 10.1021/ja501497n

Kong, 2013, Energy Environ. Sci., 6, 3553, 10.1039/c3ee42413h

Merki, 2011, Chem. Sci., 2, 1262, 10.1039/C1SC00117E

Seger, 2012, Angew. Chem., Int. Ed., 51, 9128, 10.1002/anie.201203585

Wang, 2014, Adv. Mater., 26, 3761, 10.1002/adma.201400265

Morales-Guio, 2014, Nat. Commun., 5, 10.1038/ncomms4059

Benck, 2012, ACS Catal., 2, 1916, 10.1021/cs300451q

Vrubel, 2012, Energy Environ. Sci., 5, 6136, 10.1039/c2ee02835b

Li, 2014, Nano Lett., 14, 1228, 10.1021/nl404108a

Chang, 2013, Adv. Mater., 25, 756, 10.1002/adma.201202920

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Laursen, 2013, Phys. Chem. Chem. Phys., 15, 20000, 10.1039/c3cp52890a

Sun, 2013, J. Am. Chem. Soc., 135, 17699, 10.1021/ja4094764

Gao, 2012, J. Mater. Chem., 22, 13662, 10.1039/c2jm31916k

Wang, 2009, J. Am. Chem. Soc., 131, 15976, 10.1021/ja905970y

Kung, 2012, ACS Nano, 6, 7016, 10.1021/nn302063s

Chang, 2013, ACS Nano, 7, 9443, 10.1021/nn404272j

Sun, 2011, Energy Environ. Sci., 4, 2630, 10.1039/c0ee00791a

Choi, 2014, ACS Appl. Mater. Interfaces, 6, 2335, 10.1021/am404355m

Gong, 2012, J. Am. Chem. Soc., 134, 10953, 10.1021/ja303034w

Chen, 1996, Chem. Rev., 96, 1477, 10.1021/cr950232u

Chen, 2013, Chem. Commun., 49, 8896, 10.1039/c3cc44076a

Chen, 2012, Angew. Chem., Int. Ed., 51, 6131, 10.1002/anie.201200699

Cao, 2013, J. Am. Chem. Soc., 135, 19186, 10.1021/ja4081056

Liu, 2013, Chem.–Eur. J., 19, 14781, 10.1002/chem.201302425

Li, 2011, Energy Environ. Sci., 4, 1680, 10.1039/c1ee01105g

Zhang, 2013, J. Mater. Chem. A, 1, 3340, 10.1039/c2ta00608a

Li, 2010, Angew. Chem., Int. Ed., 49, 3653, 10.1002/anie.201000659

Sweeny, 1958, J. Am. Chem. Soc., 80, 799, 10.1021/ja01537a012

Oyama, 2003, J. Catal., 216, 343, 10.1016/S0021-9517(02)00069-6

Oyama, 2009, Catal. Today, 143, 94, 10.1016/j.cattod.2008.09.019

Carenco, 2013, Chem. Rev., 113, 7981, 10.1021/cr400020d

Paseka, 1995, Electrochim. Acta, 40, 1633, 10.1016/0013-4686(95)00077-R

Deng, 1999, Catal. Today, 51, 113, 10.1016/S0920-5861(99)00013-9

Xu, 2013, Chem. Commun., 49, 6656, 10.1039/c3cc43107j

Popczun, 2013, J. Am. Chem. Soc., 135, 9267, 10.1021/ja403440e

Popczun, 2014, Angew. Chem., Int. Ed., 53, 5427, 10.1002/anie.201402646

Tian, 2014, J. Am. Chem. Soc., 136, 7587, 10.1021/ja503372r

Pu, 2014, Chem. Mater., 26, 4326, 10.1021/cm501273s

Liu, 2014, Angew. Chem., Int. Ed., 53, 6710, 10.1002/anie.201404161

Xiao, 2014, Energy Environ. Sci., 7, 2624, 10.1039/C4EE00957F

Dou, 2012, Phys. Chem. Chem. Phys., 14, 1339, 10.1039/C2CP23775J

Wu, 2012, J. Mater. Chem., 22, 11121, 10.1039/c2jm30832k

Levy, 1973, Science, 181, 547, 10.1126/science.181.4099.547

The Chemistry of Transition Metal Carbides and Nitrides , ed. S. T. Oyama , Chapman & Hall , London , 1996

Hwu, 2005, Chem. Rev., 105, 185, 10.1021/cr0204606

Weidman, 2012, J. Power Sources, 202, 11, 10.1016/j.jpowsour.2011.10.093

Vrubel, 2012, Angew. Chem., Int. Ed., 51, 12703, 10.1002/anie.201207111

Liao, 2014, Energy Environ. Sci., 7, 387, 10.1039/C3EE42441C

Xiao, 2014, Appl. Catal., B, 154–155, 232, 10.1016/j.apcatb.2014.02.020

Chen, 2013, Energy Environ. Sci., 6, 943, 10.1039/c2ee23891h

Wan, 2014, Angew. Chem., Int. Ed., 53, 6407, 10.1002/anie.201402998

Berglund, 2014, J. Am. Chem. Soc., 136, 1535, 10.1021/ja411604k

Wu, 2011, Angew. Chem., Int. Ed., 50, 3520, 10.1002/anie.201006635

Jang, 2010, Chem. Commun., 46, 8600, 10.1039/c0cc02247k

Guo, 2012, Chem.–Eur. J., 18, 7862, 10.1002/chem.201103904

Yeh, 2013, J. Power Sources, 237, 141, 10.1016/j.jpowsour.2013.02.092

A. W. Searcy , in Chemical and mechanical behavior of inorganic materials , ed. A. W. Searcy , D. V. Ragone and U. Colombo , Wiley-Interscience , New York , 1970

Chen, 2012, J. Phys. Chem. C, 116, 24968, 10.1021/jp308371y

Chen, 2013, RSC Adv., 3, 1728, 10.1039/C2RA21752J

Chen, 2014, Catal. Sci. Technol., 4, 53, 10.1039/C3CY00743J

Vijh, 1990, Int. J. Hydrogen Energy, 15, 789, 10.1016/0360-3199(90)90014-P

Vijh, 1992, Int. J. Hydrogen Energy, 17, 479, 10.1016/0360-3199(92)90146-N

Vijh, 1995, J. Mater. Sci. Lett., 14, 982, 10.1007/BF00274625

Wirth, 2012, Appl. Catal., B, 126, 225, 10.1016/j.apcatb.2012.07.023

Schmitt, 2010, J. Mater. Chem., 20, 223, 10.1039/B910968D

Estruga, 2014, Chem. Commun., 50, 1454, 10.1039/C3CC48168A

Szczech, 2010, J. Mater. Chem., 20, 1375, 10.1039/B917032D

Los, 1992, J. Electroanal. Chem., 333, 115, 10.1016/0022-0728(92)80385-H

Borodzínski, 1994, J. Appl. Electrochem., 24, 1267, 10.1007/BF00249892

Wu, 2011, Science, 332, 443, 10.1126/science.1200832

Zhao, 2013, Angew. Chem., Int. Ed., 52, 13638, 10.1002/anie.201307527

Bierman, 2009, Energy Environ. Sci., 2, 1050, 10.1039/b912095e

Meng, 2013, Acc. Chem. Res., 46, 1616, 10.1021/ar400003q

Py, 1983, Can. J. Phys., 61, 76, 10.1139/p83-013

Tsai, 2014, Nano Lett., 14, 1381, 10.1021/nl404444k

Yan, 2013, Chem. Commun., 49, 4884, 10.1039/c3cc41031e

Chen, 2013, Energy Environ. Sci., 6, 1818, 10.1039/c3ee40596f

Woodhouse, 2009, Chem. Soc. Rev., 38, 197, 10.1039/B719545C

Katz, 2009, Energy Environ. Sci., 2, 103, 10.1039/B812177J

Xiang, 2014, ACS Comb. Sci., 16, 47, 10.1021/co400151h

Gerken, 2014, Energy Environ. Sci., 7, 2376, 10.1039/C4EE00436A