Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting

Chemical Society Reviews - Tập 43 Số 22 - Trang 7787-7812
Jingrun Ran1,2,3, Jun Zhang1,2,4,5,6, Jiaguo Yu5,6,7, Mietek Jaroniec8,9,10, Shi Zhang Qiao1,2,3
1Adelaide, Australia
2School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
3The University of Adelaide
4State Key Laboratory of Advanced Technology for Material Synthesis and Processing
5State Key Laboratory of Advanced Technology for Material Synthesis and Processing, Wuhan University of Technology, Wuhan, P. R. China
6Wuhan University of Technology
7Wuhan, P. R. China
8Department of Chemistry & Biochemistry, Kent State University, Kent, Ohio 44242, USA
9Kent State University
10Kent, USA

Tóm tắt

Active and robust cocatalysts constructed from earth-abundant elements greatly contribute to the highly efficient, stable and cost-effective photocatalytic water splitting.

Từ khóa


Tài liệu tham khảo

Du, 2012, Energy Environ. Sci., 5, 6012, 10.1039/c2ee03250c

Colmenares, 2013, Chem. Soc. Rev., 10.1039/c3cs60262a

Colmenares, 2009, Materials, 2, 2228, 10.3390/ma2042228

Qu, 2013, Chem. Soc. Rev., 42, 2568, 10.1039/C2CS35355E

Fujishima, 1972, Nature, 238, 37, 10.1038/238037a0

Borgarello, 1982, J. Am. Chem. Soc., 104, 2996, 10.1021/ja00375a010

Zuo, 2010, J. Am. Chem. Soc., 132, 11856, 10.1021/ja103843d

Niishiro, 2007, J. Phys. Chem. C, 111, 17420, 10.1021/jp074707k

Asahi, 2001, Science, 293, 269, 10.1126/science.1061051

Li, 2008, Adv. Mater., 20, 3816, 10.1002/adma.200702975

Wen, 2011, Chem. Commun., 47, 6138, 10.1039/c1cc10851d

Li, 2013, ACS Catal., 3, 882, 10.1021/cs4000975

Kongkanand, 2008, J. Am. Chem. Soc., 130, 4007, 10.1021/ja0782706

Ning, 2011, Chem. Commun., 47, 1536, 10.1039/C0CC03401K

Chen, 2012, J. Mater. Chem., 22, 7507, 10.1039/c2jm16797b

Yu, 2010, Green Chem., 12, 1611, 10.1039/c0gc00236d

Borgarello, 1981, Nature, 289, 158, 10.1038/289158a0

Kim, 1991, J. Am. Chem. Soc., 113, 9561, 10.1021/ja00025a021

Min, 2011, J. Phys. Chem. C, 115, 13938, 10.1021/jp203750z

Gomes Silva, 2011, J. Am. Chem. Soc., 133, 595, 10.1021/ja1086358

Thimsen, 2011, Nano Lett., 11, 35, 10.1021/nl1022354

Takahashi, 2013, J. Phys. Chem. C, 117, 2511, 10.1021/jp3064257

Chen, 2011, Science, 331, 746, 10.1126/science.1200448

Wang, 2011, Nano Lett., 11, 3026, 10.1021/nl201766h

Wang, 2008, Nat. Mater., 8, 76, 10.1038/nmat2317

Yi, 2010, Nat. Mater., 9, 559, 10.1038/nmat2780

Sathish, 2006, Int. J. Hydrogen Energy, 31, 891, 10.1016/j.ijhydene.2005.08.002

Bao, 2008, Chem. Mater., 20, 110, 10.1021/cm7029344

Wu, 2010, J. Am. Chem. Soc., 132, 6679, 10.1021/ja909456f

Wu, 2012, Adv. Mater., 24, 2567, 10.1002/adma.201200564

Yu, 2011, Chem. Commun., 47, 9161, 10.1039/c1cc12722e

Madhusudan, 2011, Appl. Catal., B, 110, 286, 10.1016/j.apcatb.2011.09.014

Yang, 2009, J. Am. Chem. Soc., 131, 4078, 10.1021/ja808790p

Chen, 2011, Chem. Commun., 47, 2631, 10.1039/c0cc04471g

Wang, 2012, Angew. Chem., Int. Ed., 51, 13089, 10.1002/anie.201207554

Lv, 2010, J. Phys. Chem. C, 114, 6157, 10.1021/jp906550t

Zhang, 2013, Phys. Chem. Chem. Phys., 15, 12088, 10.1039/c3cp50734c

Meng, 2013, J. Am. Chem. Soc., 135, 10286, 10.1021/ja404851s

Dai, 2011, J. Phys. Chem. C, 115, 7339, 10.1021/jp200788n

Chen, 2010, Chem. Rev., 110, 6503, 10.1021/cr1001645

Kudo, 2009, Chem. Soc. Rev., 38, 253, 10.1039/B800489G

Zhou, 2012, Energy Environ. Sci., 5, 6732, 10.1039/c2ee03447f

Tachibana, 2012, Nat. Photonics, 6, 511, 10.1038/nphoton.2012.175

Tong, 2012, Adv. Mater., 24, 229, 10.1002/adma.201102752

Zheng, 2012, Energy Environ. Sci., 5, 6717, 10.1039/c2ee03479d

Kubacka, 2012, Chem. Rev., 112, 1555, 10.1021/cr100454n

Ni, 2007, Renewable Sustainable Energy Rev., 11, 401, 10.1016/j.rser.2005.01.009

Maeda, 2007, J. Phys. Chem. C, 111, 7851, 10.1021/jp070911w

Osterloh, 2008, Chem. Mater., 20, 35, 10.1021/cm7024203

Zhang, 2013, Catal. Sci. Technol., 3, 1672, 10.1039/c3cy00018d

Maeda, 2011, J. Photochem. Photobiol., C, 12, 237, 10.1016/j.jphotochemrev.2011.07.001

Tsuji, 2005, Angew. Chem., Int. Ed., 44, 3565, 10.1002/anie.200500314

Hara, 2003, Chem. Commun., 3000, 10.1039/b309935k

Sasaki, 2008, J. Catal., 259, 133, 10.1016/j.jcat.2008.07.017

Maeda, 2010, Chem.–Eur. J., 16, 7750, 10.1002/chem.201000616

Sayed, 2012, J. Phys. Chem. C, 116, 12462, 10.1021/jp3029962

Yu, 2010, J. Phys. Chem. C, 114, 13118, 10.1021/jp104488b

Lingampalli, 2013, Energy Environ. Sci., 6, 3589, 10.1039/c3ee42623h

Li, 2011, J. Am. Chem. Soc., 133, 10878, 10.1021/ja2025454

Wu, 2012, J. Am. Chem. Soc., 134, 10337, 10.1021/ja303306u

Yan, 2009, J. Catal., 266, 165, 10.1016/j.jcat.2009.06.024

Xiang, 2011, J. Phys. Chem. C, 115, 7355, 10.1021/jp200953k

Maeda, 2010, J. Am. Chem. Soc., 132, 5858, 10.1021/ja1009025

Lin, 2011, Catal. Today, 174, 106, 10.1016/j.cattod.2011.01.052

Murdoch, 2011, Nat. Chem., 3, 489, 10.1038/nchem.1048

Korzhak, 2008, J. Photochem. Photobiol., A, 198, 126, 10.1016/j.jphotochem.2008.02.026

Onsuratoom, 2011, Chem. Eng. J., 173, 667, 10.1016/j.cej.2011.08.016

Yang, 2013, Acc. Chem. Res., 46, 1900, 10.1021/ar300227e

Sato, 2005, J. Am. Chem. Soc., 127, 4150, 10.1021/ja042973v

Liu, 2008, J. Phys. Chem. C, 112, 8521, 10.1021/jp802537u

Maeda, 2011, J. Phys. Chem. C, 115, 3057, 10.1021/jp110025x

Youngblood, 2009, J. Am. Chem. Soc., 131, 926, 10.1021/ja809108y

Ma, 2010, J. Phys. Chem. C, 114, 12818, 10.1021/jp103722j

Abe, 2009, Chem. Commun., 3577, 10.1039/b905935k

Maeda, 2006, Nature, 440, 295, 10.1038/440295a

Maeda, 2006, Angew. Chem., Int. Ed., 45, 7806, 10.1002/anie.200602473

Yu, 2011, Energy Environ. Sci., 4, 1364, 10.1039/c0ee00729c

Yu, 2011, J. Phys. Chem. C, 115, 4953, 10.1021/jp111562d

Ran, 2011, Green Chem., 13, 2708, 10.1039/c1gc15465f

Yu, 2013, Catal. Sci. Technol., 3, 1782, 10.1039/c3cy20878h

Yu, 2012, Nanoscale, 4, 2670, 10.1039/c2nr30129f

Peng, 2011, Energy Fuels, 25, 2203, 10.1021/ef200369z

Zhang, 2012, Nano Lett., 12, 4584, 10.1021/nl301831h

Xiang, 2011, Nanoscale, 3, 3670, 10.1039/c1nr10610d

Zhou, 2013, Chem. Commun., 49, 2237, 10.1039/c3cc38999e

Fan, 2011, J. Phys. Chem. C, 115, 10694, 10.1021/jp2008804

Xiang, 2012, J. Am. Chem. Soc., 134, 6575, 10.1021/ja302846n

Brown, 2010, J. Am. Chem. Soc., 132, 9672, 10.1021/ja101031r

Brown, 2012, J. Am. Chem. Soc., 134, 5627, 10.1021/ja2116348

Huang, 2012, J. Am. Chem. Soc., 134, 16472, 10.1021/ja3062584

Wang, 2011, Angew. Chem., Int. Ed., 50, 3193, 10.1002/anie.201006352

Li, 2013, Energy Environ. Sci., 6, 2597, 10.1039/c3ee40992a

Han, 2012, Science, 338, 1321, 10.1126/science.1227775

Li, 2013, Adv. Mater., 25, 6613, 10.1002/adma.201302908

Xie, 2012, Nanoscale, 4, 1267, 10.1039/c2nr11846g

Seo, 2012, Chem. Commun., 48, 10452, 10.1039/c2cc36216c

Tabata, 2010, J. Phys. Chem. C, 114, 11215, 10.1021/jp103158f

Wen, 2012, ChemSusChem, 5, 849, 10.1002/cssc.201200190

Li, 2013, J. Phys. Chem. C, 117, 376, 10.1021/jp310138b

Hou, 2013, Angew. Chem., Int. Ed., 52, 3621, 10.1002/anie.201210294

Zhang, 2012, J. Am. Chem. Soc., 134, 8348, 10.1021/ja301726c

Ma, 2012, J. Am. Chem. Soc., 134, 19993, 10.1021/ja3095747

Maeda, 2010, Angew. Chem., Int. Ed., 49, 4096, 10.1002/anie.201001259

Maeda, 2013, Chem.–Eur. J., 19, 4986, 10.1002/chem.201300158

Wang, 2013, Angew. Chem., Int. Ed., 52, 11252, 10.1002/anie.201303693

Lee, 2013, Catal. Sci. Technol., 3, 1694, 10.1039/c3cy00054k

Agegnehu, 2012, J. Mater. Chem., 22, 13849, 10.1039/c2jm30474k

Wang, 2013, Phys. Chem. Chem. Phys., 15, 12033, 10.1039/C2CP43628K

Yamada, 2012, Energy Environ. Sci., 5, 6111, 10.1039/c2ee03106j

Sreethawong, 2005, Int. J. Hydrogen Energy, 30, 1053, 10.1016/j.ijhydene.2004.09.007

Yu, 2011, J. Colloid Interface Sci., 357, 223, 10.1016/j.jcis.2011.01.101

Zhang, 2010, Chem. Commun., 46, 7631, 10.1039/c0cc01562h

Zhang, 2011, Nano Lett., 11, 4774, 10.1021/nl202587b

Xu, 2011, Int. J. Hydrogen Energy, 36, 6560, 10.1016/j.ijhydene.2011.02.103

Kumar, 2013, Chem. Commun., 49, 9443, 10.1039/c3cc44742a

Dang, 2013, Int. J. Hydrogen Energy, 38, 2126, 10.1016/j.ijhydene.2012.11.135

Husin, 2011, Green Chem., 13, 1745, 10.1039/c1gc15070g

Shimizu, 2005, Chem. Mater., 17, 5161, 10.1021/cm050982c

Kato, 2003, J. Am. Chem. Soc., 125, 3082, 10.1021/ja027751g

Kudo, 1989, J. Catal., 120, 337, 10.1016/0021-9517(89)90274-1

Garcia-Esparza, 2013, ChemSusChem, 6, 168, 10.1002/cssc.201200780

Zhang, 2012, Chem. Sci., 3, 443, 10.1039/C1SC00644D

Liu, 2013, ACS Catal., 3, 2052, 10.1021/cs4002755

Tran, 2012, Phys. Chem. Chem. Phys., 14, 11596, 10.1039/c2cp41450c

Dinh, 2013, J. Mater. Chem. A, 1, 13308, 10.1039/c3ta12914d

Sakamoto, 2009, Nanoscale, 1, 106, 10.1039/b9nr00186g

Domen, 1980, J. Chem. Soc., Chem. Commun., 543, 10.1039/C39800000543

Hu, 2010, J. Catal., 272, 1, 10.1016/j.jcat.2010.03.020

Miseki, 2009, Energy Environ. Sci., 2, 306, 10.1039/b818922f

Hwang, 2000, J. Catal., 193, 40, 10.1006/jcat.2000.2875

Kim, 2002, Chem. Commun., 2488, 10.1039/b208092c

Kim, 1999, Chem. Commun., 1077, 10.1039/a902892g

Kudo, 1988, J. Catal., 111, 67, 10.1016/0021-9517(88)90066-8

Domen, 1986, J. Phys. Chem., 90, 292, 10.1021/j100274a018

Takahara, 2001, Chem. Mater., 13, 1194, 10.1021/cm000572i

Kondo, 2004, Chem. Mater., 16, 4304, 10.1021/cm030355s

Ou, 2006, Chem. Phys. Lett., 429, 199, 10.1016/j.cplett.2006.08.024

Huang, 2013, J. Phys. Chem. C, 117, 11584, 10.1021/jp400010z

Wu, 2004, Int. J. Hydrogen Energy, 29, 1601, 10.1016/j.ijhydene.2004.02.013

Foo, 2013, Nanoscale, 5, 759, 10.1039/C2NR33004K

Fukuzumi, 2013, ChemSusChem, 6, 1834, 10.1002/cssc.201300361

Tian, 2006, Appl. Catal., A, 309, 76, 10.1016/j.apcata.2006.04.035

Choi, 2008, J. Mater. Chem., 18, 2371, 10.1039/b718535a

Ryu, 2007, Ind. Eng. Chem. Res., 46, 7476, 10.1021/ie0703033

Sreethawong, 2005, Catal. Commun., 6, 661, 10.1016/j.catcom.2005.06.004

Bandara, 2005, Photochem. Photobiol. Sci., 4, 857, 10.1039/b507816d

Xu, 2009, Int. J. Hydrogen Energy, 34, 6096, 10.1016/j.ijhydene.2009.05.119

Xu, 2010, Int. J. Hydrogen Energy, 35, 5254, 10.1016/j.ijhydene.2010.02.129

Zhang, 2013, Int. J. Hydrogen Energy, 38, 7241, 10.1016/j.ijhydene.2013.04.027

Jang, 2009, J. Phys. Chem. C, 113, 8990, 10.1021/jp900653r

Rocha, 2013, RSC Adv., 3, 20308, 10.1039/c3ra43561j

Wender, 2013, Nanoscale, 5, 9310, 10.1039/c3nr02195e

Wang, 2012, Appl. Surf. Sci., 259, 118, 10.1016/j.apsusc.2012.07.003

Hong, 2013, ChemSusChem, 6, 2263, 10.1002/cssc.201300647

Zhang, 2012, Int. J. Hydrogen Energy, 37, 17060, 10.1016/j.ijhydene.2012.08.120

Yuan, 2013, Int. J. Hydrogen Energy, 38, 7218, 10.1016/j.ijhydene.2013.03.169

Zhang, 2013, ChemSusChem, 6, 2009, 10.1002/cssc.201300409

Zhang, 2013, Dalton Trans., 42, 12998, 10.1039/c3dt51256h

Zong, 2008, J. Am. Chem. Soc., 130, 7176, 10.1021/ja8007825

Nguyen, 2013, Nanoscale, 5, 1479, 10.1039/c2nr34037b

Frame, 2010, J. Phys. Chem. C, 114, 10628, 10.1021/jp101308e

Tang, 2011, Angew. Chem., Int. Ed., 50, 10203, 10.1002/anie.201104412

Zong, 2011, J. Phys. Chem. C, 115, 12202, 10.1021/jp2006777

Kibsgaard, 2012, Nat. Mater., 11, 963, 10.1038/nmat3439

Jang, 2008, Appl. Catal., A, 346, 149, 10.1016/j.apcata.2008.05.020

Iijima, 1991, Nature, 354, 56, 10.1038/354056a0

Ma, 2008, Nanotechnology, 19, 115709, 10.1088/0957-4484/19/11/115709

Liu, 2012, Int. J. Hydrogen Energy, 37, 1375, 10.1016/j.ijhydene.2011.10.030

Novoselov, 2004, Science, 306, 666, 10.1126/science.1102896

Geim, 2007, Nat. Mater., 6, 183, 10.1038/nmat1849

Xiang, 2012, Chem. Soc. Rev., 41, 782, 10.1039/C1CS15172J

Xiang, 2013, J. Phys. Chem. Lett., 4, 753, 10.1021/jz302048d

Tu, 2013, Adv. Funct. Mater., 23, 4996, 10.1002/adfm.201203547

Xie, 2013, Adv. Mater., 25, 3820, 10.1002/adma.201301207

Ye, 2012, Catal. Sci. Technol., 2, 969, 10.1039/c2cy20027a

Lv, 2012, J. Mater. Chem., 22, 1539, 10.1039/C1JM14502A

Peng, 2012, J. Phys. Chem. C, 116, 22720, 10.1021/jp306947d

Khan, 2012, RSC Adv., 2, 12122, 10.1039/c2ra21596a

Jia, 2011, J. Phys. Chem. C, 115, 11466, 10.1021/jp2023617

Chai, 2013, Dalton Trans., 42, 3402, 10.1039/C2DT32458J

Min, 2012, J. Phys. Chem. C, 116, 25415, 10.1021/jp3093786

Lv, 2012, J. Mater. Chem., 22, 18542, 10.1039/c2jm33325b

Tard, 2009, Chem. Rev., 109, 2245, 10.1021/cr800542q

Wen, 2011, J. Catal., 281, 318, 10.1016/j.jcat.2011.05.015

Cao, 2013, Phys. Chem. Chem. Phys., 15, 18363, 10.1039/c3cp53350f

Dong, 2012, ChemSusChem, 5, 2133, 10.1002/cssc.201200490

Ma, 2013, Chem.–Eur. J., 19, 7480, 10.1002/chem.201300579

Kasahara, 2002, J. Phys. Chem. A, 106, 6750, 10.1021/jp025961+

Meekins, 2011, J. Phys. Chem. Lett., 2, 2304, 10.1021/jz200852m

Artero, 2011, Angew. Chem., Int. Ed., 50, 7238, 10.1002/anie.201007987

Kamata, 2009, Chem. Phys. Lett., 470, 90, 10.1016/j.cplett.2009.01.012

Wang, 2012, Ind. Eng. Chem. Res., 51, 9945, 10.1021/ie2027469

Kanan, 2008, Science, 321, 1072, 10.1126/science.1162018

Kanan, 2009, Chem. Soc. Rev., 38, 109, 10.1039/B802885K

Surendranath, 2009, J. Am. Chem. Soc., 131, 2615, 10.1021/ja807769r

Lutterman, 2009, J. Am. Chem. Soc., 131, 3838, 10.1021/ja900023k

Esswein, 2011, Energy Environ. Sci., 4, 499, 10.1039/C0EE00518E

Osterloh, 2013, Chem. Soc. Rev., 42, 2294, 10.1039/C2CS35266D

Jeong, 2006, Int. J. Hydrogen Energy, 31, 1142, 10.1016/j.ijhydene.2005.10.005

Machida, 2000, Chem. Mater., 12, 812, 10.1021/cm990577j

Noda, 2008, Chem. Mater., 20, 5361, 10.1021/cm703202n

Machida, 2003, J. Mater. Chem., 13, 1433, 10.1039/b301938c

Kato, 2003, Catal. Today, 78, 561, 10.1016/S0920-5861(02)00355-3

Kato, 2001, J. Phys. Chem. B, 105, 4285, 10.1021/jp004386b

Abe, 2004, J. Phys. Chem. B, 108, 811, 10.1021/jp036300v

Machida, 2005, J. Phys. Chem. B, 109, 7801, 10.1021/jp044833d

Yoshino, 2002, Chem. Mater., 14, 3369, 10.1021/cm0109037

Abe, 2006, J. Phys. Chem. B, 110, 2219, 10.1021/jp0552933

Kudo, 2000, J. Phys. Chem. B, 104, 571, 10.1021/jp9919056

Machida, 2001, J. Phys. Chem. B, 105, 3289, 10.1021/jp004297z

Hwang, 2003, J. Phys. Chem. B, 107, 4963, 10.1021/jp034229n

Kato, 2001, J. Photochem. Photobiol., A, 145, 129, 10.1016/S1010-6030(01)00574-3

Ishihara, 1999, J. Phys. Chem. B, 103, 1, 10.1021/jp983590k

Kudo, 2000, Chem. Phys. Lett., 331, 373, 10.1016/S0009-2614(00)01220-3

Yoshioka, 2005, J. Catal., 232, 102, 10.1016/j.jcat.2005.02.021

Wang, 2004, Chem. Phys. Lett., 384, 139, 10.1016/j.cplett.2003.12.015

Townsend, 2012, Energy Environ. Sci., 5, 9543, 10.1039/c2ee22665k

Thaminimulla, 2000, J. Catal., 196, 362, 10.1006/jcat.2000.3049

Maeda, 2006, J. Catal., 243, 303, 10.1016/j.jcat.2006.07.023

Maeda, 2006, J. Phys. Chem. B, 110, 13753, 10.1021/jp061829o

Maeda, 2010, J. Phys. Chem. Lett., 1, 2655, 10.1021/jz1007966

Maeda, 2006, J. Phys. Chem. B, 110, 13107, 10.1021/jp0616563

Lee, 2007, Chem. Mater., 19, 2120, 10.1021/cm062980d

Sakata, 2011, ChemSusChem, 4, 181, 10.1002/cssc.201000258

Maeda, 2011, Chem. Sci., 2, 1362, 10.1039/c1sc00177a

Xiong, 2013, Eur. J. Inorg. Chem., 10.1002/ejic.201300439