Early studies on Cr-Coated Zircaloy-4 as enhanced accident tolerant nuclear fuel claddings for light water reactors

Journal of Nuclear Materials - Tập 517 - Trang 268-285 - 2019
Jean-Christophe Brachet1, Isabel Idarraga-Trujillo1, Marion Le Flem1, Matthieu Le Saux1, Valérie Vandenberghe1,2, Stéphane Urvoy1, Elodie Rouesne1, Thomas Guilbert1, Caroline Toffolon-Masclet1, Marc Tupin3, C. Phalippou4, Fernando Lomello5, Fréderic Schuster6, Alain Billard2, Gihan Velişa2, C. Ducros7, Frédéric Sanchette7,8
1CEA, DEN, Service de Recherches Métallurgiques Appliquées (SRMA), Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
2IRTES – LERMPS UTBM, 2 place Tharradin, F-25000, Montbéliard, France
3CEA, DEN, Service d’Etude des Matériaux Irradiés (SEMI), Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
4CEA, DEN, Service d’Etudes Mécaniques et Thermiques (SEMT), Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
5CEA, DEN, Service d’Etudes Analytiques et de Réactivité des Surfaces (SEARS), Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
6CEA, DEN, Université Paris-Saclay, F-91191, Gif-sur-Yvette, France
7CEA, LITEN, DTNM, LCH, Univ. Grenoble Alpes, F-38000, Grenoble, France
8Nogent International Center for CVD Innovation, LRC CEA-ICD-LASMIS, UTT, Antenne de Nogent, Pôle Technologique de Haute-Champagne, 52800, Nogent, France

Tóm tắt

Từ khóa


Tài liệu tham khảo

Carmack, 2013

Zinkle, 2014, Accident tolerant fuels for LWRs: a perspective, J. Nucl. Mater., 448, 374, 10.1016/j.jnucmat.2013.12.005

Bragg-Sitton, 2014, Development of advanced accident-tolerant fuels for commercial LWRs, Nucl. News, 53, 83

Koo, 2014, KAERI's development of LWR accident tolerant fuel, Nucl. Technol., 186, 10.13182/NT13-89

Brachet, 2014, CEA studies on advanced nuclear fuel claddings for enhanced accident tolerant LWRs fuel (LOCA and beyond LOCA conditions)

Kurata, 2016, Research and development methodology for practical use of accident tolerant fuel in light water reactors, Nucl. Eng. Technol., 48, 26, 10.1016/j.net.2015.12.004

Bischoff, 2015, Development of fuels with enhanced accident tolerance

Duan, 2017, Current status of materials development of nuclear fuel cladding tubes, for light water reactors, Nucl. Eng. Des., 316, 131, 10.1016/j.nucengdes.2017.02.031

Terrani, 2018, Accident tolerant fuel cladding development: promise, status, and challenges, J. Nucl. Mater., 501, 10.1016/j.jnucmat.2017.12.043

H. Palancher et al., “Advances in ATF R&D at CEA”, Proceedings of “Fuel Reliability Program Winter Technical Advisory Committee Meeting, 7th. EPRI/INL/DOE Joint Workshop on Accident Tolerant Fuel”, (21-22 February 2018), Ft. Worth, USA.

Terrani, 2013, Protection of zirconium by alumina- and chromia-forming iron alloys under high-temperature steam exposure, J. Nucl. Mater., 64, 10.1016/j.jnucmat.2013.03.006

Park, 2013, High temperature steam oxidation of Al3Ti-based alloys for the oxidation-resistant surface layer on Zr fuel claddings, J. Nucl. Mater., 437, 75, 10.1016/j.jnucmat.2013.01.338

Khatkhatay, 2014, Superior corrosion resistance properties of TiN-based coatings on Zircaloy tubes in supercritical water, J. Nucl. Mater., 451, 346, 10.1016/j.jnucmat.2014.04.010

Kim, 2015, Adhesion property and high-temperature oxidation behavior of Cr-coated Zircaloy-4 cladding tube prepared by 3D laser coating, J. Nucl. Mater., 465, 531, 10.1016/j.jnucmat.2015.06.030

Daub, 2015, Investigation of the impact of coatings on corrosion and hydrogen uptake of Zircaloy-4, J. Nucl. Mater., 467, 260, 10.1016/j.jnucmat.2015.09.041

Kuprin, 2015, Vacuum-arc chromium-based coatings for protection of zirconium alloys from the high-temperature oxidation in air, J. Nucl. Mater., 465, 400, 10.1016/j.jnucmat.2015.06.016

Park, 2015, High temperature steam-oxidation behavior of arc ion plated Cr coatings for accident tolerant fuel claddings, Surf. Coating. Technol., 280, 256, 10.1016/j.surfcoat.2015.09.022

Alat, 2015, Ceramic coating for corrosion (c3) resistance of nuclear fuel cladding, Surf. Coating. Technol., 281, 133, 10.1016/j.surfcoat.2015.08.062

Maier, 2015, Cold spray deposition of Ti2AlC coatings for improved nuclear fuel cladding, J. Nucl. Mater., 466, 712, 10.1016/j.jnucmat.2015.06.028

Alat, 2016, Multilayer (TiN, TiAlN) ceramic coatings for nuclear fuel cladding, J. Nucl. Mater., 478, 236, 10.1016/j.jnucmat.2016.05.021

Park, 2016, Behavior of an improved Zr fuel cladding with oxidation resistant coating under loss-of-coolant accident conditions, J. Nucl. Mater., 482, 75, 10.1016/j.jnucmat.2016.10.021

Yeom, 2016, Laser surface annealing and characterization of Ti 2 AlC plasma vapor deposition coating on zirconium-alloy substrate, Thin Solid Films, 615, 202, 10.1016/j.tsf.2016.07.024

Younker, 2016, Neutronic evaluation of coating and cladding materials for accident tolerant fuels, Prog. Nucl. Energy, 88, 10, 10.1016/j.pnucene.2015.11.006

Carr, 2016, Investigations of aluminum-doped self-healing zircaloy surfaces in context of accident-tolerant fuel cladding Research, J. Mater. Eng. Perform., 25, 2347, 10.1007/s11665-016-2094-4

Yeom, 2016, Evolution of multilayered scale structures during high temperature oxidation of ZrSi2, J. Mater. Res., 31, 10.1557/jmr.2016.363

Jin, 2016, A study of the zirconium alloy protection by Cr3C2–NiCr coating for nuclear reactor application, Surf. Coating. Technol., 287, 55, 10.1016/j.surfcoat.2015.12.088

Zhong, 2016, Performance of iron-chromium-aluminum alloy surface coatings on Zircaloy 2 under high-temperature steam and normal BWR operating conditions, J. Nucl. Mater., 470, 327, 10.1016/j.jnucmat.2015.11.037

Borisov, 2016, “Capabilities to improve corrosion resistance of fuel claddings by using powerful laser and plasma sources”, ISSN 1063-7788, Phys. Atom. Nucl., 79, 1656, 10.1134/S1063778816140039

Lee, 2017, Mechanical analysis of surface-coated zircaloy cladding, Nucl. Eng. Technol., 49, 1031, 10.1016/j.net.2017.03.012

Shah, 2017, Development of surface coatings for enhanced accident tolerant fuel

Kim, 2017, Progress of surface modified Zr cladding development for ATF at KAERI

Van Nieuwenhove, 2017, In-pile testing of CrN, TiAlN and AlCrN coatings on zircaloy cladding in the halden reactor

Brova, 2017, Undoped and ytterbium-doped titanium aluminum nitride coatings for improved oxidation behavior of nuclear fuel cladding, Surf. Coating. Technol., 10.1016/j.surfcoat.2017.09.076

Skarohlid, 2017, High temperature behaviour of CrAlSiN max phase coatings on zirconium alloy

Tang, 2017, Protective coatings on zirconium-based alloys as accident tolerant fuel (ATF) claddings, Corros. Rev., 35, 141, 10.1515/corrrev-2017-0010

Tang, 2018, Deposition, characterization and high-temperature steam oxidation behavior of single-phase Ti2AlC-coated Zircaloy-4, Corros. Sci., 135, 87, 10.1016/j.corsci.2018.02.035

Gao, 2018

Tang, 2018, Improvement of the high-temperature oxidation resistance of Zr alloy cladding by surface modification with aluminium-containing ternary carbides

Park, 2018, Microstructure and mechanical behavior of Zr substrates coated with FeCrAl and Mo by cold-spraying, J. Nucl. Mater., 504, 261, 10.1016/j.jnucmat.2018.03.047

Jin, 2018, Corrosion of the bonding at FeCrAl/Zr alloy interfaces in steam, J. Nucl. Mater., 508, 411, 10.1016/j.jnucmat.2018.05.071

Park, 2018, TEM/STEM study of Zircaloy-2 with protective FeAl(Cr) layers under simulated BWR environment and high-temperature steam exposure, J. Nucl. Mater., 502, 95, 10.1016/j.jnucmat.2018.01.055

Yeom, 2018, Development of cold spray process for oxidation-resistant FeCrAl and Mo diffusion barrier coatings on optimized ZIRLO™, J. Nucl. Mater., 507, 306, 10.1016/j.jnucmat.2018.05.014

Yeom, 2018, Evaluation of steam corrosion and water quenching behavior of zirconium-silicide coated LWR fuel claddings, J. Nucl. Mater., 499, 256, 10.1016/j.jnucmat.2017.11.045

Zhong, 2018, Response of Cr and Cr-Al coatings on Zircaloy-2 to high temperature steam, J. Nucl. Mater., 498, 137, 10.1016/j.jnucmat.2017.10.021

Sevecek, 2018, Development of Cr cold spray-coated fuel cladding with enhanced accident tolerance, Nucl. Eng. Tech.

Gurgen, 2018, Estimation of coping time in pressurized water reactors for near term accident tolerant fuel claddings, Nucl. Eng. Des., 337, 38, 10.1016/j.nucengdes.2018.06.020

Dong, 2018, Improved oxidation resistance of zirconium at high-temperature steam by magnetron sputtered Cr-Al-Si ternary coatings, Surf. Coating. Technol., 10.1016/j.surfcoat.2018.04.029

Wang, 2018, Behavior of plasma sprayed Cr coatings and FeCrAl coatings on Zr fuel cladding under loss-of-coolant accident conditions, Surf. Coating. Technol., 344, 141, 10.1016/j.surfcoat.2018.03.016

Zhang, 2018, Preparation, structure, and properties of an AlCrMoNbZr high-entropy alloy coating for accident-tolerant fuel cladding, Surf. Coating. Technol., 347, 13, 10.1016/j.surfcoat.2018.04.037

Wang, 2018, Oxidation resistance improvement of Zr-4 alloy in 1000°C steam environment using ZrO2/FeCrAl bilayer coating, Surf. Coating. Technol., 10.1016/j.surfcoat.2018.05.005

Jin, 2018, Investigation on the oxidation and corrosion behaviors of FeCrZr alloy as a protective material for Zr cladding, J. Alloy. Comp., 10.1016/j.jallcom.2018.04.250

Baque, 1968, Protection du zirconium contre l’oxydation au moyen de revêtements métalliques (Protection of zirconium and its alloys by metallic coatings), J. Nucl. Mater., 25, 166, 10.1016/0022-3115(68)90042-1

Loriers, 1968

Idarraga-trujillo, 2013, Assessment at CEA of coated nuclear fuel cladding for LWRs with increased margins in LOCA and beyond LOCA conditions

Brachet, 2015, On-going studies ar CEA on chromium coated zirconium based nuclear fuel claddings for enhanced accident tolerant LWR fuel

Brachet, 2016, Behavior under LOCA conditions of enhanced accident tolerant chromium coated zircaloy-4 claddings

Bischoff, 2016, Development of Cr-coated zirconium cladding for enhanced accident tolerance

Bischoff, 2018, AREVA NP's enhanced accident tolerant fuel developments: focus on Cr-coated M5 cladding, Nucl. Eng. Tech., 50, 223, 10.1016/j.net.2017.12.004

Brachet, 2017, Behavior of chromium coated M5 claddings under LOCA conditions

Delafoy, 2018, Benefits of Framatome's E-ATF evolutionary solution: Cr-coated cladding with Cr2O3-doped UO2 fuel

J.C. Brachet, T. Guilbert, M. Le Saux, J. Rousselot, G. Nony, C. Toffolon-Masclet, A. Michau, F. Schuster, H. Palancher, J. Bischoff, J. Augereau, E. Pouillier, « Behavior of Cr-coated M5 claddings during and after high temperature steam oxidation from 800°C up to 1500°C (LOss-of-Coolant Accident & Design Extension Conditions)”, Proceedings of WRFPM/TOPFUEL 2018, (30 Sept. – 04 Oct. 2018), Prague, Czech Republic.

M. Dumerval, Q. Houmaire, J.C. Brachet, H. Palancher J. Bischoff, E. Pouillier, « behavior of chromium coated M5 claddings upon thermal ramp tests under internal pressure (LOss-of-Coolant accident conditions)”, Proceedings of WRFPM/TOPFUEL 2018, (30 Sept. – 04 Oct. 2018), Prague, Czech Republic.

J. Bischoff, C. Delafoy, N. Chaari, C. Vauglin, K. Buchanan, P. Barberis, F. Schuster, J-C Brachet, K. Nimishakavi, “Cr-coated cladding development at Framatome”, Proceedings of WRFPM/TOPFUEL 2018, (30 Sept. – 04 Oct. 2018), Prague, Czech Republic.

Thornton, 1989, Stress-related effects in thin films, Thin Solid Films, 171, 5, 10.1016/0040-6090(89)90030-8

Xiao, 2018, « Effect of roughness of substrate and sputtering power on the propertis of TiN coatings deposited by magnetron sputtering for ATF », J. Nucl. Mater., 509, 542, 10.1016/j.jnucmat.2018.07.011

Ribis, 2018, Atomic-scale interface structure of a Cr-coated Zircaloy-4 material, J. Mat. Sci., 10.1007/s10853-018-2333-1

Wu, 2018, HRTEM and chemical study of an ion-irradiated chromium/zircaloy-4 Interface, J. Nucl. Mater., 504, 289, 10.1016/j.jnucmat.2018.01.029

1986

Wu, 2017

J.C. Brachet et al., “Mechanical behavior at room temperature and metallurgical study of low-tin Zy-4 and M5™ alloys after oxidation at 1100°C and quenching”, Proceedings of the Technical Committee Meeting on Fuel Behavior under Transient and LOCA Conditions, IAEA-TECDOC-1320, Halden, Norway, (Sept 10–14, 2001), pp. 139-158.

Portier, 2005, “Influence of long service exposures on the thermal-mechanical behaviour of Zy-4 and M5™ alloys in LOCA conditions”, J. ASTM Int. (JAI), 2, JAI12468, 10.1520/JAI12468

Brachet, 2008, Hydrogen content, pre oxidation and cooling scenario influences on post-quench mechanical properties of Zy-4 and M5™ alloys in LOCA conditions - relationship with the post-quench microstructure, J. ASTM Int. (JAI), 5

Le Saux, 2011, Influence of pre-transient oxide on LOCA high temperature steam oxidation and post-quench mechanical properties of zircaloy-4 and M5™ cladding

Billone, 2008

Nagase, 2004, Effect of pre-hydriding on thermal shock resistance of zircaloy-4 cladding under simulated loss-of-coolant accident conditions, J. Nucl. Sci. Technol., 41, 723, 10.1080/18811248.2004.9715539

Nagase, 2009, Behavior of high burn-up fuel cladding under LOCA conditions, J. Nucl. Sci. Technol., 46, 763, 10.1080/18811248.2007.9711583

Brachet, 2013, 253

Sawatzki, 1977, Oxidation of zirconium during a high temperature transient, 134

Chung, 1980

Négyesi, 2013

Michau, 2018

Aubert, 1983, Hard chrome coatings deposited by physical vapour deposition, Thin Solid Films, 108, 165, 10.1016/0040-6090(83)90501-1

Cholvy, 1985, Characterization and wear resistance of coatings in the Cr-C-N ternary system deposited by physical vapour deposition, Thin Solid Films, 126, 51, 10.1016/0040-6090(85)90174-9

Cosset, 1996, Deposition of corrosion-resistant chromium and nitrogen-doped chromium coatings by cathodic magnetron sputtering, Surf. Coating. Technol., 79, 25, 10.1016/0257-8972(95)02454-9

Gautier, 1996, Effects of deposition parameters on the texture of chromium films deposited by vacuum arc evaporation, Thin Solid Films, 289, 34, 10.1016/S0040-6090(96)08891-8

Pina, 1997, Residual stresses and crystallographic texture in hard-chromium electroplated coatings, Surf. Coating. Technol., 96, 148, 10.1016/S0257-8972(97)00075-3

Holzwarth, 2002, Mechanical and thermomechanical properties of commercially pure chromium and chromium alloys, J. Nucl. Mater., 300, 161, 10.1016/S0022-3115(01)00745-0

Gu, 2004, Chromium and chromium-based alloys: problems and possibilities for high-temperature service, JOM, 28, 10.1007/s11837-004-0197-0

Dupin, 1999, A thermodynamic database for zirconium alloys, J. Nucl. Mater., 275, 287, 10.1016/S0022-3115(99)00125-7

P. Lafaye, PhD Thesis, Paris-Est University (2017) (- in French).

1990, Landolt-börnstein book, vol. 26

Leistikow, 1987, Oxidation kinetics and related phenomena of zircaloy-4 fuel cladding exposed to high temperature steam and hydrogen-steam mixtures under PWR accident conditions, Nucl. Eng. Des., 103, 65, 10.1016/0029-5493(87)90286-X

Billone, 2008

Baek, 2008, Breakaway phenomenon of Zr-based alloys during a high-temperature oxidation, J. Nucl. Mater., 372, 152, 10.1016/j.jnucmat.2007.02.011

Nagase, 2003, Oxidation kinetics of low-Sn zircaloy-4 at the temperature range from 773 to 1573K, J. Nucl. Sci. Technol., 40, 213, 10.1080/18811248.2003.9715351

Vandenberghe, 2012, Sensitivity to chemical composition variations and heating/oxidation mode of the breakaway oxidation in M5® cladding steam oxidized at 1000°C (LOCA conditions)

Hózer, 2008, Ductile-to-brittle transition of oxidised Zircaloy-4 and E110 claddings, J. Nucl. Mater., 373, 415, 10.1016/j.jnucmat.2007.07.002

Park, 2010, Microstructural characterization of ZrO2 layers formed during the transition to breakaway oxidation, J. Nucl. Mater., 399, 208, 10.1016/j.jnucmat.2010.01.021

Steinbrück, 2010, High-temperature oxidation and quench behaviour of Zircaloy-4 and E110 cladding alloys, Prog. Nucl. Energy, 52, 19, 10.1016/j.pnucene.2009.07.012

Brachet, 2002, 673

Mazères, 2013, Contribution to modeling of hydrogen effect on oxygen diffusion in Zy-4 alloy during high temperature steam oxidation, Oxid. Met., 79, 121, 10.1007/s11085-012-9335-1

Brachet, 2017, J. Nucl. Mater., 488, 267, 10.1016/j.jnucmat.2017.03.009

Mandapaka, 2018, Corrosion behavior of ceramic-coated ZIRLO™exposed to supercritical water, J. Nucl. Mater., 498, 495, 10.1016/j.jnucmat.2017.10.040