Early onset ataxia with comorbid myoclonus and epilepsy: A disease spectrum with shared molecular pathways and cortico-thalamo-cerebellar network involvement

European Journal of Paediatric Neurology - Tập 45 - Trang 47-54 - 2023
Suus A.M. van Noort1,2,3, Sterre van der Veen1,3, Tom J. de Koning1,4,5, Marina A.J. de Koning-Tijssen1,3, Dineke S. Verbeek1,6, Deborah A. Sival1,2
1Department of Paediatrics, Beatrix Children's Hospital, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
2Department of Pediatric Neurology, Beatrix Children's Hospital, University Medical Center Groningen, Groningen, the Netherlands
3Department of Neurology, University Medical Center Groningen, Groningen, The Netherlands
4Department of Pediatrics, University Medical Center Groningen, Groningen, The Netherlands
5Pediatrics, Department of Clinical Sciences, Lund University, Lund, Sweden
6Department of Genetics, University Medical Center Groningen, Groningen, the Netherlands

Tài liệu tham khảo

Brandsma, 2019, A clinical diagnostic algorithm for early onset cerebellar ataxia, Eur. J. Paediatr. Neurol., 23, 692, 10.1016/j.ejpn.2019.08.004 Sival, 2020, Early onset ataxia with comorbid dystonia: clinical, anatomical and biological pathway analysis expose shared pathophysiology, Diagnostics, 10, 997, 10.3390/diagnostics10120997 Schirinzi, 2018, Dystonia as a network disorder: a concept in evolution, Curr. Opin. Neurol., 31, 498, 10.1097/WCO.0000000000000580 Bostan, 2018, The basal ganglia and the cerebellum: nodes in an integrated network, Nat. Rev. Neurosci., 19, 338, 10.1038/s41583-018-0002-7 Zutt, 2015, A novel diagnostic approach to patients with myoclonus, Nat. Rev. Neurol., 11, 687, 10.1038/nrneurol.2015.198 Van Egmond, 2015, Myoclonus in childhood-onset neurogenetic disorders: the importance of early identification and treatment, Eur. J. Paediatr. Neurol., 19, 726, 10.1016/j.ejpn.2015.07.003 Erro, 2017, The epileptic and non-epileptic spectrum of paroxysmal dyskinesias: channelopathies, synaptopathies, and transportopathies, Mov. Disord., 32, 310, 10.1002/mds.26901 Papandreou, 2020, The expanding spectrum of movement disorders in genetic epilepsies, Dev. Med. Child Neurol., 62, 178, 10.1111/dmcn.14407 Freitas, 2019, Seizures and movement disorders: phenomenology, diagnostic challenges and therapeutic approaches, J. Neurol. Neurosurg. Psychiatry, 920, 10.1136/jnnp-2018-320039 Raudvere, 2019, J. Vilo: g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update), Nucleic Acid Res., 10.1093/nar/gkz369 Reimand, 2007, g:Profiler--a web-based toolset for functional profiling of gene lists from large-scale experiments, Nucleic Acids Res., 35, 10.1093/nar/gkm226 Nibbeling, 2017, Using the shared genetics of dystonia and ataxia to unravel their pathogenesis, Neurosci. Biobehav. Rev., 75, 22, 10.1016/j.neubiorev.2017.01.033 Deelen, 2019, Improving the diagnostic yield of exome- sequencing by predicting gene–phenotype associations using large-scale gene expression analysis, Nat. Commun., 10, 2837, 10.1038/s41467-019-10649-4 Vissers, 2017, A clinical utility study of exome sequencing versus conventional genetic testing in pediatric neurology, Genet. Med., 19, 1055, 10.1038/gim.2017.1 Crossley, 2014, The hubs of the human connectome are generally implicated in the anatomy of brain disorders, Brain, 137, 2382, 10.1093/brain/awu132 Zhang, 2020, Altered dynamic effective connectivity of the default mode network in newly diagnosed drug-naïve juvenile myoclonic epilepsy, NeuroImage Clin., 28, 10.1016/j.nicl.2020.102431 Gleichgerrcht, 2015, Connectomics and graph theory analyses: novel insights into network abnormalities in epilepsy, Epilepsia, 56, 1660, 10.1111/epi.13133 Quartarone, 2020, New insights into cortico-basal-cerebellar connectome: clinical and physiological considerations, Brain, 143, 396 Palesi, 2017, Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas, Sci. Rep., 7, 1, 10.1038/s41598-017-13079-8 Gilsoul, 2019, Subtle brain developmental abnormalities in the pathogenesis of juvenile myoclonic epilepsy, Front. Cell. Neurosci., 13, 1, 10.3389/fncel.2019.00433 Lee, 2020, Thalamic nuclei volumes and network in juvenile myoclonic epilepsy, Acta Neurol. Scand., 141, 271, 10.1111/ane.13198 Norden, 2002, The role of subcortical structures in human epilepsy, Epilepsy Behav., 3, 219, 10.1016/S1525-5050(02)00029-X Sprengers, 2017, Deep brain and cortical stimulation for epilepsy, Cochrane Database Syst. Rev., 2017 Herrman, 2019, Anterior thalamic deep brain stimulation in refractory epilepsy: a randomized, double-blinded study, Acta Neurol. Scand., 139, 294 Zhang, 2019, Thalamus stimulation for myoclonus dystonia Syndrome: five cases and long-term follow-up, World Neurosurg., 122, e933, 10.1016/j.wneu.2018.10.177 Kobayashi, 2010, Thalamic deep brain stimulation for the treatment of action myoclonus caused by perinatal anoxia, Stereotact. Funct. Neurosurg., 88, 259, 10.1159/000315464 Perlman, 2020, Update on the treatment of ataxia: medication and emerging therapies, Neurotherapeutics, 17, 1660, 10.1007/s13311-020-00941-3 Darios, 2020, Impairment of lysosome function and autophagy in rare neurodegenerative diseases, J. Mol. Biol., 432, 2714, 10.1016/j.jmb.2020.02.033 Ebrahimi-Fakhari, 2016, Congenital disorders of autophagy: an emerging novel class of inborn errors of neuro-metabolism, Brain, 139, 317, 10.1093/brain/awv371 Peng, 2019, Preserving lysosomal function in the aging brain: insights from neurodegeneration, Neurotherapeutics, 16, 611, 10.1007/s13311-019-00742-3 Bhat, 2018, New discoveries in progressive myoclonus epilepsies: a clinical outlook, Expert Rev. Neurother., 18, 649, 10.1080/14737175.2018.1503949 Fraldi, 2016, Brain disorders due to lysosomal dysfunction, Annu. Rev. Neurosci., 39, 277, 10.1146/annurev-neuro-070815-014031 Autti T, Joensuu R, Åberg L. Decreased T2 Signal in the Thalami May Be a Sign of Lysosomal Storage Disease. doi:10.1007/s00234-007-0220-6. Yamada, 2001, Progressive neuronal loss in the ventral posterior lateral and medial nuclei of thalamus in Niemann-Pick disease type C mouse brain, Brain Dev., 23, 288, 10.1016/S0387-7604(01)00209-1 Kuronen, 2012, Selective spatiotemporal patterns of glial activation and neuron loss in the sensory thalamocortical pathways of neuronal ceroid lipofuscinosis 8 mice, Neurobiol. Dis., 47, 444, 10.1016/j.nbd.2012.04.018 Neniskyte, 2017, Errant gardeners: glial-cell-dependent synaptic pruning and neurodevelopmental disorders, Nat. Rev. Neurosci., 18, 658, 10.1038/nrn.2017.110 Song, 2008, Lysosomal activity associated with developmental axon pruning, J. Neurosci., 28, 8993, 10.1523/JNEUROSCI.0720-08.2008 Zhen, 2015, Impairment of autophagosome-lysosome fusion in the buff mutant mice with the VPS33AD251E mutation, Autophagy, 11, 1608, 10.1080/15548627.2015.1072669 Ebrahimi-Fakhari, 2019, Movement disorders in treatable inborn errors of metabolism, Mov. Disord., 34, 598, 10.1002/mds.27568 Chakrabarti, 2009, Autophagy activation and enhanced mitophagy characterize the Purkinje cells of pcd mice prior to neuronal death, Mol. Brain, 2, 1, 10.1186/1756-6606-2-24 Sargeant, 2016, Commentary: possible involvement of lysosomal dysfunction in pathological changes of the brain in aged progranulin-deficient mice, Front. Aging Neurosci., 8 Unno, 2012, Development of Purkinje cell degeneration in a knockin mouse model reveals lysosomal involvement in the pathogenesis of SCA6, Proc. Natl. Acad. Sci. U. S. A., 109, 17693, 10.1073/pnas.1212786109 Alves, 2014, The autophagy/lysosome pathway is impaired in SCA7 patients and SCA7 knock-in mice, Acta Neuropathol., 128, 705, 10.1007/s00401-014-1289-8 Fassio, 2020, Emerging role of the autophagy/lysosomal degradative pathway in neurodevelopmental disorders with epilepsy, Front. Cell. Neurosci., 14, 1, 10.3389/fncel.2020.00039 McLoughlin, 2020, Pathogenesis of SCA3 and implications for other polyglutamine diseases, Neurobiol. Dis., 134 Gazulla, 2020, Contributions to the study of spinocerebellar ataxia type 38 (SCA38), J. Neurol., 267, 2288 Vanier, 2015, Complex lipid trafficking in Niemann-Pick disease type C, J. Inherit. Metab. Dis., 38, 187, 10.1007/s10545-014-9794-4 Bourque, 2018, Novel ELOVL4 mutation associated with erythrokeratodermia and spinocerebellar ataxia (SCA 34), Neurol. Genet., 4, 1, 10.1212/NXG.0000000000000263 Bruce, 2017, Lipid processing in the brain: a key regulator of systemic metabolism, Front. Endocrinol., 8, 1 Puchkov, 2013, Greasing the synaptic vesicle cycle by membrane lipids, Trends Cell Biol., 23, 493, 10.1016/j.tcb.2013.05.002 Barber, 2019, Lipid metabolism crosstalk in the brain: glia and neurons, Front. Cell. Neurosci., 13, 1, 10.3389/fncel.2019.00212 Dietschy, 2009, Central nervous system: cholesterol turnover, brain development and neurodegeneration, Biol. Chem., 390, 287, 10.1515/BC.2009.035 Nóbrega, 2019, Restoring brain cholesterol turnover improves autophagy and has therapeutic potential in mouse models of spinocerebellar ataxia, Acta Neuropathol., 138, 837, 10.1007/s00401-019-02019-7 Marras, 2016, Nomenclature of genetic movement disorders: recommendations of the international Parkinson and movement disorder society task force, Mov. Disord., 31, 436, 10.1002/mds.26527 Wagnon, 2017, Loss-of-function variants of SCN8A in intellectual disability without seizures, Neurol. Genet., 3, 1, 10.1212/NXG.0000000000000170 Conway, 2017, UpSetR: an R package for the visualization of intersecting sets and their properties, Bioinformatics, 33, 2938, 10.1093/bioinformatics/btx364