Thiếu ngủ trong giai đoạn đầu đời giảm đáng kể sản xuất melatonin và chức năng sinh năng của tuyến tùng: những hệ lụy tiềm tàng đối với sự phát triển thiếu hụt chuyển hóa

Brain Structure and Function - Tập 220 - Trang 663-676 - 2014
Li-You Chen1,2, Cheng Tiong3, Chung-Hung Tsai1, Wen-Chieh Liao2, Shun-Fa Yang1, Su-Chung Youn2, Fu-Der Mai4, Hung-Ming Chang5
1Institute of Medicine, Chung Shan Medical University, Taichung, Taiwan
2Department of Anatomy, Faculty of Medicine, Chung Shan Medical University, Taichung, Taiwan
3Division of Gastroenterology, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
4Department of Biochemistry, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
5Department of Anatomy, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan

Tóm tắt

Thiếu ngủ trong giai đoạn đầu đời (ESD) là một tình trạng nghiêm trọng với các hệ quả chuyển hóa nghiêm trọng. Hormone melatonin do tuyến tùng tiết ra đóng vai trò quan trọng trong việc điều chỉnh cân bằng chức năng chuyển hóa. Trong bối cảnh việc tăng cường dòng Ca2+ qua trung gian norepinephrine và sự kích hoạt protein kinase A (PKA) sau đó có trách nhiệm cho việc phosphoryl hóa protein liên kết với yếu tố phản ứng cAMP (CREB) và tổng hợp melatonin, nghiên cứu hiện tại đã xác định liệu sự biểu hiện Ca2+, cùng với các cơ chế phân tử tham gia vào sản xuất melatonin có sự thay đổi đáng kể sau ESD hay không. Các chú chuột vừa cai sữa bị ESD mãn tính và duy trì theo chu kỳ tự nhiên (chu kỳ sáng: tối = 12:12) cho đến tuổi trưởng thành đã được xử lý bằng phương pháp quang phổ khối khí ion thứ cấp thời gian bay, cùng với điện di và hóa mô miễn dịch kết hợp với xét nghiệm phổ để phát hiện tín hiệu Ca2+, thụ thể adren, PKA, CREB phosphoryl hóa (pCREB) cũng như mức melatonin trong huyết thanh. Chức năng sinh năng và chuyển hóa của tuyến tùng được xác định bằng cách đo hoạt tính cytochrome oxidase và mức glucose, triglyceride, insulin, lipoprotein mật độ cao và thấp trong huyết thanh. Kết quả cho thấy rằng ở những con chuột bình thường, tín hiệu Ca2+ mạnh mẽ cùng với hoạt động thụ thể adren, PKA và pCREB đều được phát hiện trong các tế bào tuyến tùng. Hình ảnh và tín hiệu Ca2+ nâng cao tương ứng tốt với chức năng sinh năng không bị tổn hại, sản xuất melatonin bình thường và hoạt động chuyển hóa. Tuy nhiên, sau ESD, không chỉ Ca2+ mà cả các hoạt động tín hiệu tuyến tùng đều giảm đáng kể. Phân tích máu cho thấy mức melatonin giảm và chức năng chuyển hóa bị suy giảm sau ESD. Vì con đường tín hiệu trung gian Ca2+ và sự tổng hợp melatonin bị suy giảm có sự tương quan tích cực với sự phát triển của rối loạn trao đổi chất, việc bổ sung melatonin trong trẻ em có thể là một phương pháp thực tiễn để ngăn ngừa hoặc khắc phục sự thiếu hụt chuyển hóa do ESD gây ra.

Từ khóa


Tài liệu tham khảo

Abe T, Tamada H, Koizumi T, Nakajima A, Satoh N, Sakuragi S (1996) Decreased serum melatonin levels in rats with experimental autoimmune uveitis/pinealitis and in patients with uveitis. Ocul Immunol Inflamm 4:175–182 Antle MC, Mistlberger RE (2000) Circadian clock resetting by sleep deprivation without exercise in the Syrian hamster. J Neurosci 20:9326–9332 Bergmann BM, Kushida CA, Everson CA, Gilliland MA, Obermeyer W, Rechtschaffen A (1989) Sleep deprivation in the rat: II. Methodology. Sleep 12:5–12 Borges-Silva CN, Alonso-Vale MI, Franzói-de-Moraes SM, Takada J, Peres SB, Andreotti S, Skorupa AL, Cipolla-Neto J, Pithon-Curi TC, Lima FB (2005) Pinealectomy impairs adipose tissue adaptability to exercise in rats. J Pineal Res 38:278–283 Brainard GC, Richardson BA, King TS, Reiter RJ (1984) The influence of different light spectra on the suppression of pineal melatonin content in the Syrian hamster. Brain Res 294:333–339 Cardinali DP, Cano P, Jiménez-Ortega V, Esquifino AI (2011) Melatonin and the metabolic syndrome: physiopathologic and therapeutic implications. Neuroendocrinology 93:133–142 Cardinali DP, Srinivasan V, Brzezinski A, Brown GM (2012) Melatonin and its analogs in insomnia and depression. J Pineal Res 52:365–375 Chang HM, Chen BJ, Wu UI, Huang YL, Mai FD (2008a) Molecular imaging of enhanced Na+ expression in the liver of total sleep deprived rats by TOF-SIMS. Appl Surf Sci 255:1131–1134 Chang HM, Huang YL, Lan CT, Wu UI, Hu ME, Youn SC (2008b) Melatonin preserves superoxide dismutase activity in hypoglossal motoneurons of adult rats following peripheral nerve injury. J Pineal Res 44:172–180 Chang HM, Mai FD, Chen BJ, Wu UI, Huang YL, Lan CT, Ling YC (2008c) Sleep deprivation predisposes liver to oxidative stress and phospholipid damage—a quantitative molecular imaging study. J Anat 212:295–305 Chang HM, Wu UI, Lan CT (2009) Melatonin preserves longevity protein (sirtuin 1) expression in the hippocampus of total sleep-deprived rats. J Pineal Res 47:211–220 Chang HM, Mai FD, Lei SL, Ling YC (2010) Impaired sodium levels in the suprachiasmatic nucleus are associated with the formation of cardiovascular deficiency in sleep-deprived rats. J Anat 217:694–704 Chang HM, Liao WC, Sheu JN, Chang CC, Lan CT, Mai FD (2012) Sleep deprivation impairs Ca2+ expression in the hippocampus: ionic imaging analysis for cognitive deficiency with TOF-SIMS. Microsc Microanal 18:425–435 Cintra L, Durán P, Guevara MA, Aguilar A, Castañón-Cervantes O (2002) Pre- and post-natal protein malnutrition alters the effect of rapid eye movements sleep-deprivation by the platform-technique upon the electrocorticogram of the circadian sleep-wake cycle and its frequency bands in the rat. Nutr Neurosci 5:91–101 Cohen RA, Paul RH, Stroud L, Gunstad J, Hitsman BL, McCaffery J, Sweet L, Niaura R, MacFarlane A, Bryant RA, Gordon E (2006) Early life stress and adult emotional experience: an international perspective. Int J Psychiatry Med 36:35–52 Danese A, Moffitt TE, Harrington H, Milne BJ, Polanczyk G, Pariante CM, Poulton R, Caspi A (2009) Adverse childhood experiences and adult risk factors for age-related disease: depression, inflammation, and clustering of metabolic risk markers. Arch Pediatr Adolesc Med 163:1135–1143 Deboer T, Détári L, Meijer JH (2007) Long term effects of sleep deprivation on the mammalian circadian pacemaker. Sleep 30:257–262 Escames G, Ozturk G, Baño-Otálora B, Pozo MJ, Madrid JA, Reiter RJ, Serrano E, Concepción M, Acuña-Castroviejo D (2012) Exercise and melatonin in humans: reciprocal benefits. J Pineal Res 52:1–11 Galano A, Tan DX, Reiter RJ (2013) On the free radical scavenging activities of melatonin’s metabolites, AFMK and AMK. J Pineal Res 54:245–257 Gozal D, Kheirandish-Gozal L (2012) Childhood obesity and sleep: relatives, partners, or both?—a critical perspective on the evidence. Ann N Y Acad Sci 1264:135–141 Gupta BB, Spessert R, Vollrath L (2005) Molecular components and mechanism of adrenergic signal transduction in mammalian pineal gland: regulation of melatonin synthesis. Indian J Exp Biol 43:115–149 Heim C, Nemeroff CB (2001) The role of childhood trauma in the neurobiology of mood and anxiety disorders: preclinical and clinical studies. Biol Psychiatry 49:1023–1039 Hipólide DC, Tufik S, Raymond R, Nobrega JN (1998) Heterogeneous effects of rapid eye movement sleep deprivation on binding to alpha- and beta-adrenergic receptor subtypes in rat brain. Neuroscience 86:977–987 Howell HE, Morgan PJ (1991) Beta-adrenergic stimulation increases cAMP and melatonin production in ovine pinealocyte cultures. J Pineal Res 10:122–129 Kamdar BB, Needham DM, Collop NA (2012) Sleep deprivation in critical illness: its role in physical and psychological recovery. J Intensive Care Med 27:97–111 Killgore WD (2010) Effects of sleep deprivation on cognition. Prog Brain Res 185:105–129 Kitagawa A, Ohta Y, Ohashi K (2012) Melatonin improves metabolic syndrome induced by high fructose intake in rats. J Pineal Res 52:403–413 Knutson KL (2010) Sleep duration and cardiometabolic risk: a review of the epidemiologic evidence. Best Pract Res Clin Endocrinol Metab 24:731–743 Korkmaz A, Topal T, Tan DX, Reiter RJ (2009a) Role of melatonin in metabolic regulation. Rev Endocr Metab Disord 10:261–270 Korkmaz A, Reiter RJ, Topal T, Manchester LC, Oter S, Tan DX (2009b) Melatonin: an established antioxidant worthy of use in clinical trials. Mol Med 15:43–50 Kozirog M, Poliwczak AR, Duchnowicz P, Koter-Michalak M, Sikora J, Broncel M (2011) Melatonin treatment improves blood pressure, lipid profile, and parameters of oxidative stress in patients with metabolic syndrome. J Pineal Res 50:261–266 Lee S, Kim Y (2013) Effects of exercise alone on insulin sensitivity and glucose tolerance in obese youth. Diabetes Metab J 37:225–232 Lemola S, Räikkönen K, Scheier MF, Matthews KA, Pesonen AK, Heinonen K, Lahti J, Komsi N, Paavonen JE, Kajantie E (2011) Sleep quantity, quality and optimism in children. J Sleep Res 20:12–20 Lima FB, Machado UF, Bartol I, Seraphim PM, Sumida DH, Moraes SM, Hell NS, Okamoto MM, Saad MJ, Carvalho CR, Cipolla-Neto J (1998) Pinealectomy causes glucose intolerance and decreases adipose cell responsiveness to insulin in rats. Am J Physiol 275:E934–E941 Luyster FS, Strollo PJ Jr, Zee PC, Walsh JK (2012) Sleep: a health imperative. Sleep 35:727–734 Mai FD, Chen LY, Ling YC, Chen BJ, Wu UI, Chang HM (2010) Molecular imaging of in vivo calcium ion expression in area postrema of total sleep deprived rats: implications for cardiovascular regulation by TOF-SIMS analysis. Appl Surf Sci 256:4456–4461 Maronde E, Wicht H, Taskén K, Genieser HG, Dehghani F, Olcese J, Korf HW (1999) CREB phosphorylation and melatonin biosynthesis in the rat pineal gland: involvement of cyclic AMP dependent protein kinase type II. J Pineal Res 27:170–182 Matricciani LA, Olds TS, Blunden S, Rigney G, Williams MT (2012) Never enough sleep: a brief history of sleep recommendations for children. Pediatrics 129:548–556 Mauriz JL, Collado PS, Veneroso C, Reiter RJ, González-Gallego J (2013) A review of the molecular aspects of melatonin’s anti-inflammatory actions: recent insights and new perspectives. J Pineal Res 54:1–14 McEwen BS (2006) Sleep deprivation as a neurobiological and physiological stressor: allostasis and allostatic load. Metabolism 55:S20–S23 Møller M, Baeres FMM (2002) The anatomy and innervation of the mammalian pineal gland. Cell Tissue Res 309:139–150 Morilak DA, Barrera G, Echevarria DJ, Garcia AS, Hernandez A, Ma S, Petre CO (2005) Role of brain norepinephrine in the behavioral response to stress. Prog Neuropsychopharmacol Biol Psychiatry 29:1214–1224 Morselli LL, Guyon A, Spiegel K (2012) Sleep and metabolic function. Eur J Physiol 463:139–160 Nduhirabandi F, Du Toit EF, Lochner A (2012) Melatonin and the metabolic syndrome: a tool for effective therapy in obesity-associated abnormalities? Acta Physiol 205:209–223 Palagini L, Rosenlicht N (2011) Sleep, dreaming, and mental health: a review of historical and neurobiological perspectives. Sleep Med Rev 15:179–186 Phillips DIW (2007) Programming of the stress responses: a fundamental mechanism underlying the long-term effects of the fetal environment? J Int Med 261:453–460 Reiter RJ, Tan DX, Korkmaz A, Ma S (2012) Obesity and metabolic syndrome: association with chronodisruption, sleep deprivation, and melatonin suppression. Ann Med 44:564–577 Rios-Lugo MJ, Cano P, Jiménez-Ortega V, Fernández-Mateos MP, Scacchi PA, Cardinali DP, Esquifino AI (2010) Melatonin effect on plasma adiponectin, leptin, insulin, glucose, triglycerides, and cholesterol in normal and high fat-fed rats. J Pineal Res 49:342–348 Roman V, Walstra I, Luiten PG, Meerlo P (2005) Too little sleep gradually desensitizes the serotonin 1A receptor system. Sleep 28:1505–1510 Sassone-Corsi P (1995) Transcription factors responsive to cAMP. Annu Rev Cell Dev Biol 11:355–377 Simonneaux V, Ribelayga C (2003) Generation of the melatonin endocrine message in mammals: a review of the complex regulation of melatonin synthesis by norepinephrine, peptides, and other pineal transmitters. Pharmacol Rev 55:325–395 Smolen AJ (1990) Image analytic techniques for quantification of immuno-histochemical staining in the nervous system. In: Conn PM (ed) Quantitative and qualitative microscopy, vol 3. Academic Press, San Diego, pp 208–229 Spiegel K, Leproult R, Van Caurer E (1999) Impact of sleep debt on metabolic and endocrine function. Lancet 354:1435–1439 Stehle JH, Saade A, Rawashdeh O, Ackermann K, Jilg A, Sebestény T, Maronde E (2011) A survey of molecular details in the human pineal gland in the light of phylogeny, structure, function and chronobiological diseases. J Pineal Res 51:17–43 Stoschitzky K, Sakotnik A, Lercher P, Zweiker R, Maier R, Liebmann P, Lindner W (1999) Influence of beta-blockers on melatonin release. Eur J Clin Pharmacol 55:111–115 Sugden AL, Sugden D, Klein DC (1986) Essential role of calcium influx in the adrenergic regulation of cAMP and cGMP in rat pinealocytes. J Biol Chem 261:11608–11612 Tan DX, Manchester LC, Terron MP, Flores LJ, Reiter RJ (2007) One molecule, many derivatives: a never-ending interaction of melatonin with reactive oxygen and nitrogen species? J Pineal Res 42:28–42 Walden-Hanson T, Mitton DR, McCants RL, Yellon SM, Wilkinson CW, Matsumoto AM, Rasmussen DD (2000) Daily melatonin administration to middle-aged male rats suppresses body weight, intra-abdominal adiposity, and plasma leptin and insulin independent of food intake and total body fat. Endocrinology 141:487–497 Weaver IC (2009) Shaping adult phenotypes through early life environments. Birth Defects Res C 87:314–326 Weiss R, Bremer AA, Lustig RH (2013) What is metabolic syndrome, and why are children getting it? Ann N Y Acad Sci 1281:123–140 Wong-Riley MTT (1989) Cytochrome oxidase: an endogenous metabolic marker for neuronal activity. Trends Neurosci 12:94–101 Wu WT, Chen YC, Reiter RJ (1988) Day-night differences in the response of the pineal gland to swimming stress. Proc Soc Exp Biol Med 187:315–319 Wu UI, Mai FD, Sheu JN, Chen LY, Liu YT, Huang HC, Chang HM (2011) Melatonin inhibits microglial activation, reduces pro-inflammatory cytokine levels, and rescues hippocampal neurons of adult rats with acute Klebsiella pneumoniae meningitis. J Pineal Res 50:159–170