Early cancer detection by serum biomolecular fingerprinting spectroscopy with machine learning

eLight - Tập 3 - Trang 1-11 - 2023
Shilian Dong1, Dong He1, Qian Zhang2, Chaoning Huang1, Zhiheng Hu3, Chenyang Zhang1, Lei Nie4, Kun Wang4, Wei Luo5, Jing Yu6, Bin Tian7, Wei Wu7, Xu Chen3, Fubing Wang2,8, Jing Hu9,10, Xiangheng Xiao1,8
1Department of Physics, National Demonstration Center for Experimental Physics Education, Wuhan University, Wuhan, China
2Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
3School of Computer Science, Wuhan University, Wuhan, China
4Department of Hepatobiliary Pancreatic Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
5Department of Clinical Laboratory, Tianjin Medical University General Hospital, Tianjin, China
6Department of Blood Transfusion, Wuhan Hospital of Traditional Chinese and Western Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
7Laboratory of Printable Functional Materials and Printed Electronics, Research Center for Graphic Communication, Printing and Packaging, Wuhan University, Wuhan, China
8Wuhan Research Center for Infectious Diseases and Cancer, Chinese Academy of Medical Sciences, Wuhan, China
9Sichuan Provincial Key Laboratory for Human Disease Gene Study and the Center for Medical Genetics, Department of Laboratory Medicine, Sichuan Academy of Medical Sciences & Sichuan Provincial People’s Hospital, University of Electronic Science and Technology, Chengdu, China
10School of Medicine, University of Electronic Science and Technology of China, Chengdu, China

Tóm tắt

Label-free surface-enhanced Raman scattering (SERS) technique with ultra-sensitivity becomes more and more desirable in biomedical analysis, which is yet hindered by inefficient follow-up data analysis. Here we report an integrative method based on SERS and Artificial Intelligence for Cancer Screening (SERS-AICS) for liquid biopsy such as serum via silver nanowires, combining molecular vibrational signals processing with large-scale data mining algorithm. According to 382 healthy controls and 1582 patients from two independent cohorts, SERS-AICS not only distinguishes pan-cancer patients from health controls with 95.81% overall accuracy and 95.87% sensitivity at 95.40% specificity, but also screens out those samples at early cancer stage. The supereminent efficiency potentiates SERS-AICS a promising tool for detecting cancer with broader types at earlier stage, accompanying with the establishment of a data platform for further deep analysis.

Tài liệu tham khảo

H. Sung, J. Ferlay, R.L. Siegel, M. Laversanne, I. Soerjomataram, A. Jemal, F. Bray, Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 71, 209–249 (2021) J.C. Wan, C. Massie, J. Garcia-Corbacho, F. Mouliere, J.D. Brenton, C. Caldas, S. Pacey, R. Baird, N. Rosenfeld, Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat. Rev. Cancer 17, 223–238 (2017) J. Phallen, M. Sausen, V. Adleff, A. Leal, C. Hruban, J. White, V. Anagnostou, J. Fiksel, S. Cristiano, E. Papp, S. Speir, T. Reinert, M.B.W. Orntoft, B.D. Woodward, D. Murphy, S. Parpart-Li, D. Riley, M. Nesselbush, N. Sengamalay, A. Georgiadis, Q.K. Li, M.R. Madsen, F.V. Mortensen, J. Huiskens, C. Punt, N. van Grieken, R. Fijneman, G. Meijer, H. Husain, R.B. Scharpf, L.A. Diaz Jr., S. Jones, S. Angiuoli, T. Ørntoft, H.J. Nielsen, C.L. Andersen, V.E. Velculescu, Direct detection of early-stage cancers using circulating tumor DNA. Sci. Transl. Med. 9, eaan2415 (2017) A.M. Newman, S.V. Bratman, J. To, J.F. Wynne, N.C. Eclov, L.A. Modlin, C.L. Liu, J.W. Neal, H.A. Wakelee, R.E. Merritt, J.B. Shrager, B.W. Loo Jr., M. Diehn, An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat. Med. 20, 548–554 (2014) D. Crosby, S. Bhatia, K.M. Brindle, L.M. Coussens, C. Dive, M. Emberton, S. Esener, R.C. Fitzgerald, S.S. Gambhir, P. Kuhn, T.R. Rebbeck, S. Balasubramanian, Early detection of cancer. Science 375, 1244 (2022) P.D. Howes, R. Chandrawati, M.M. Stevens, Colloidal nanoparticles as advanced biological sensors. Science 346, 1247390 (2014) L. Guerrini, E. Garcia-Rico, A. O’Loghlen, V. Giannini, R.A. Alvarez-Puebla, Surface-enhanced Raman scattering (SERS) spectroscopy for sensing and characterization of exosomes in cancer diagnosis. Cancers 13, 2179 (2021) J. Kondo, T. Ekawa, H. Endo, K. Yamazaki, N. Tanaka, Y. Kukita, H. Okuyama, J. Okami, F. Imamura, M. Ohue, K. Kato, T. Nomura, A. Kohara, S. Mori, S. Dan, M. Inoue, High-throughput screening in colorectal cancer tissue-originated spheroids. Cancer Sci. 110, 345–355 (2019) S. Abalde-Cela, R. Rebelo, L. Wu, A.I. Barbosa, L. Rodríguez-Lorenzo, K. Kant, R.L. Reis, V.M. Correlo, L. Diéguez, A SERS-based 3D nanobiosensor: towards cell metabolite monitoring. Mater. Adv. 1, 1613–1621 (2020) J. Ko, J. Ham, H. Lee, K. Lee, W.G. Koh, Integration of a fiber-based cell culture and biosensing system for monitoring of multiple protein markers secreted from stem cells. Biosens. Bioelectron. 193, 113531 (2021) W. Nam, X. Ren, S.A.S. Tali, P. Ghassemi, I. Kim, M. Agah, W. Zhou, Refractive-index-insensitive nanolaminated SERS substrates for label-free Raman profiling and classification of living cancer cells. Nano Lett. 19, 7273–7281 (2019) W. Nam, H. Chen, X. Ren, M. Agah, I. Kim, W. Zhou, Nanolaminate plasmonic substrates for high-throughput living cell SERS measurements and artificial neural network classification of cellular drug responses. ACS Appl. Nano Mater. 5, 10358–10368 (2022) L. Zhang, C. Li, D. Peng, X. Yi, S. He, F. Liu, X. Zheng, W.E. Huang, L. Zhao, X. Huang, Raman spectroscopy and machine learning for the classification of breast cancers. Spectrochim. Acta. A. Mol. Biomol. Spectrosc. 264, 120300 (2022) Z. Wang, J. Ye, K. Zhang, L. Ding, T. Granzier-Nakajima, J.C. Ranasinghe, Y. Xue, S. Sharma, I. Biase, M. Terrones, S.H. Choi, C. Ran, R.E. Tanzi, S.X. Huang, C. Zhang, S. Huang, Rapid biomarker screening of Alzheimer’s disease by interpretable machine learning and graphene-assisted Raman spectroscopy. ACS Nano 16, 6426–6436 (2022) K. Liu, B. Liu, Y. Zhang, Q. Wu, M. Zhong, L. Shang, Y. Wang, P. Liang, W. Wang, Q. Zhao, B. Li, Building an ensemble learning model for gastric cancer cell line classification via rapid raman spectroscopy. Comput. Struct. Biotechnol. J. 21, 802–811 (2023) J. Ye, Y.-T. Yeh, Y. Xue, Z. Wang, N. Zhang, H. Liu, K. Zhang, R. Ricker, Z. Yu, A. Roder, N. Perea Lopez, L. Organtini, W. Greene, S. Hafenstein, H. Lu, E. Ghedin, M. Terrones, S. Huang, S.X. Huang, Accurate virus identification with interpretable Raman signatures by machine learning. Proc. Natl. Acad. Sci. U. S. A. 119, e2118836119 (2022) F. Bray, J. Ferlay, I. Soerjomataram, R.L. Siegel, L.A. Torre, A. Jemal, Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 68, 394–424 (2018) J. Ferlay, M. Colombet, I. Soerjomataram, C. Mathers, D.M. Parkin, M. Piñeros, M. Piñeros, F. Bray, Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. Int. J. Cancer 144, 1941–1953 (2019) C. Cao, D. Wang, C. Chung, D. Tian, A. Rimner, J. Huang, D.R. Jones, A systematic review and meta-analysis of stereotactic body radiation therapy versus surgery for patients with non-small cell lung cancer. J. Thorac. Cardiovasc. Surg. 157, 362-373.e368 (2019) G. Wu, Y. Liu, B. He, Q. Bao, A. Duan, F.F. Jin, Thermal controls on the Asian summer monsoon. Sci. Rep. 2, 1–7 (2012) K. Czamara, K. Majzner, M.Z. Pacia, K. Kochan, A. Kaczor, M. Baranska, Raman spectroscopy of lipids: a review. J. Raman Spectrosc. 46, 4–20 (2015) C. Zheng, S. Qing, J. Wang, G. Lu, H. Li, X. Lu, C. Ma, J. Tang, X. Yue, Diagnosis of cervical squamous cell carcinoma and cervical adenocarcinoma based on Raman spectroscopy and support vector machine. Photodiagnosis Photodyn. Ther. 27, 156–161 (2019) L. Habartova, B. Bunganic, M. Tatarkovic, M. Zavoral, J. Vondrousova, K. Syslova, V. Setnicka, Chiroptical spectroscopy and metabolomics for blood-based sensing of pancreatic cancer. Chirality 30, 581–591 (2018) S.J. Lee, A.C. Noble, Characterization of odor-active compounds in Californian Chardonnay wines using GC-olfactometry and GC-mass spectrometry. J. Agric. Food Chem. 51, 8036–8044 (2003) C. Matrix, M.R. Reynolds Jr., G.Y. Cho, Multivariate control charts for monitoring the mean vector and covariance matrix. J. Qual. Technol. 38, 230–253 (2006) W.S. Noble, What is a support vector machine? Nat. biotechnol. 24, 1565–1567 (2006) M.M. Eid, Y.H. Elawady, Efficient pneumonia detection for chest radiography using ResNet-based SVM. J. Electr. Comput. Eng. 5, 1–8 (2021) J.C. Fu, S.K. Lee, S.T.C. Wong, J.Y. Yeh, A.H. Wang, H.K. Wu, Image segmentation feature selection and pattern classification for mammographic microcalcifications. Comput Med Imaging Graph 29, 419–429 (2005) J.P. Kandhasamy, S.J.P.C.S. Balamurali, Performance analysis of classifier models to predict diabetes mellitus. Procedia Comput Sci 47, 45–51 (2015) S.K. Kamarajah, W.R. Burns, T.L. Frankel, C.S. Cho, H. Nathan, Validation of the American Joint Commission on Cancer (AJCC) staging system for patients with pancreatic adenocarcinoma: a Surveillance, Epidemiology and End Results (SEER) analysis. Ann. Surg. Oncol. 24, 2023–2030 (2017) J.A. Hanley, Receiver operating characteristic (ROC) methodology: the state of the art. Crit Rev Diagn Imaging 29, 307–335 (1989) M.H. Zweig, G. Campbell, Receiver-operating characteristic (ROC) plots: a fundamental evaluation tool in clinical medicine. Clin. Chem. 39, 561–577 (1993) J.C. Pruessner, C. Kirschbaum, G. Meinlschmid, D.H. Hellhammer, Two formulas for computation of the area under the curve represent measures of total hormone concentration versus time-dependent change. Psychoneuroendocrinology 28, 916–931 (2003) W.G. Hopkins, Measures of reliability in sports medicine and science. Sports Med 30, 1–15 (2000) N.F. Fernandez, G.W. Gundersen, A. Rahman, M.L. Grimes, K. Rikova, P. Hornbeck, A. Ma’ayanClustergrammer, A web-based heatmap visualization and analysis tool for high-dimensional biological data. Sci. Data 4, 1–12 (2017) N. Kim, H. Park, N. He, H.Y. Lee, S. Yoon, QCanvas: an advanced tool for data clustering and visualization of genomics data. Genomics Inform. 10, 263–265 (2012) B.B. Khomtchouk, J.R. Hennessy, C. Wahlestedt, Shinyheatmap: Ultra fast low memory heatmap web interface for big data genomics. PLoS ONE 12, e0176334 (2017) N. Gehlenborg, J. Dietzsch, K. Nieselt, A framework for visualization of microarray data and integrated meta information. Inf Vis 4, 164–175 (2005) S. Zong, L. Wang, C. Chen, J. Lu, D. Zhu, Y. Zhang, Z. Wang, Y. Cui, Facile detection of tumor-derived exosomes using magnetic nanobeads and SERS nanoprobes. Anal. Methods. 8, 5001–5008 (2016) Z. Wang, S. Zong, Y. Wang, N. Li, L. Li, J. Lu, Z. Wang, B. Chen, Y. Cui, Screening and multiple detection of cancer exosomes using an SERS-based method. Nanoscale 10, 9053–9062 (2018) E.A. Kwizera, R. O’Connor, V. Vinduska, M. Williams, E.R. Butch, S.E. Snyder, X. Chen, X. Huang, Molecular detection and analysis of exosomes using surface-enhanced Raman scattering gold nanorods and a miniaturized device. Theranostics 8, 2722–2738 (2018) T.D. Li, R. Zhang, H. Chen, Z.P. Huang, X. Ye, H. Wang, A.M. Deng, J.L. Kong, An ultrasensitive polydopamine bi-functionalized SERS immunoassay for exosome-based diagnosis and classification of pancreatic cancer. Chem. Sci. 9, 5372–5382 (2018)