ETO2-GLIS2 Hijacks Transcriptional Complexes to Drive Cellular Identity and Self-Renewal in Pediatric Acute Megakaryoblastic Leukemia

Cancer Cell - Tập 31 - Trang 452-465 - 2017
Cécile Thirant1,2, Cathy Ignacimouttou1,3, Cécile K. Lopez1,4, M’Boyba Diop2, Lou Le Mouël2,4, Clarisse Thiollier2,3, Aurélie Siret1,2, Phillipe Dessen1,2, Zakia Aid1,2, Julie Rivière1,2, Philippe Rameau2, Céline Lefebvre2, Mehdi Khaled2, Guy Leverger5, Paola Ballerini5, Arnaud Petit5, Hana Raslova1,2, Catherine L. Carmichael6, Benjamin T. Kile6, Eric Soler7
1INSERM U1170, Equipe Labellisée Ligue Contre le Cancer, Gustave Roussy Institute, 39 rue Camille Desmoulins, 94800 Villejuif, France
2Gustave Roussy, 94800 Villejuif, France
3Université Paris Diderot, 75013 Paris, France
4Université Paris-Sud, 91405 Orsay, France
5Hôpital Trousseau, AP-HP, 75012 Paris, France
6Walter and Eliza Hall Institute, Parkville, VIC 3052, Australia
7INSERM UMR967, 92265 Fontenay-aux-Roses, France

Tài liệu tham khảo

Adam, 2015, Pioneer factors govern super-enhancer dynamics in stem cell plasticity and lineage choice, Nature, 521, 366, 10.1038/nature14289 Attanasio, 2007, Loss of GLIS2 causes nephronophthisis in humans and mice by increased apoptosis and fibrosis, Nat. Genet., 39, 1018, 10.1038/ng2072 Batta, 2014, Direct reprogramming of murine fibroblasts to hematopoietic progenitor cells, Cell Rep., 9, 1871, 10.1016/j.celrep.2014.11.002 Birger, 2013, Perturbation of fetal hematopoiesis in a mouse model of Down syndrome's transient myeloproliferative disorder, Blood, 122, 988, 10.1182/blood-2012-10-460998 Bourquin, 2006, Identification of distinct molecular phenotypes in acute megakaryoblastic leukemia by gene expression profiling, Proc. Natl. Acad. Sci. USA, 103, 3339, 10.1073/pnas.0511150103 Bresnick, 2012, Master regulatory GATA transcription factors: mechanistic principles and emerging links to hematologic malignancies, Nucleic Acids Res., 40, 5819, 10.1093/nar/gks281 Carmichael, 2012, Hematopoietic overexpression of the transcription factor Erg induces lymphoid and erythro-megakaryocytic leukemia, Proc. Natl. Acad. Sci. USA, 109, 15437, 10.1073/pnas.1213454109 Chyla, 2008, Deletion of Mtg16, a target of t(16;21), alters hematopoietic progenitor cell proliferation and lineage allocation, Mol. Cell Biol., 28, 6234, 10.1128/MCB.00404-08 Dawson, 2011, Inhibition of BET recruitment to chromatin as an effective treatment for MLL-fusion leukaemia, Nature, 478, 529, 10.1038/nature10509 de Rooij, 2017, Pediatric non-Down syndrome acute megakaryoblastic leukemia is characterized by distinct genomic subsets with varying outcomes, Nat. Genet., 10.1038/ng.3772 Dore, 2011, Transcription factor networks in erythroid cell and megakaryocyte development, Blood, 118, 231, 10.1182/blood-2011-04-285981 Filippakopoulos, 2010, Selective inhibition of BET bromodomains, Nature, 468, 1067, 10.1038/nature09504 Fischer, 2012, Myeloid translocation gene 16 is required for maintenance of haematopoietic stem cell quiescence, EMBO J., 31, 1494, 10.1038/emboj.2011.500 Groschel, 2014, A single oncogenic enhancer rearrangement causes concomitant EVI1 and GATA2 deregulation in leukemia, Cell, 157, 369, 10.1016/j.cell.2014.02.019 Gruber, 2012, An Inv(16)(p13.3q24.3)-encoded CBFA2T3-GLIS2 fusion protein defines an aggressive subtype of pediatric acute megakaryoblastic leukemia, Cancer Cell, 22, 683, 10.1016/j.ccr.2012.10.007 Hamlett, 2008, Characterization of megakaryocyte GATA1-interacting proteins: the corepressor ETO2 and GATA1 interact to regulate terminal megakaryocyte maturation, Blood, 112, 2738, 10.1182/blood-2008-03-146605 Hara, 2017, Prognostic impact of specific molecular profiles in pediatric acute megakaryoblastic leukemia in non-down syndrome, Genes Chromosomes Cancer, 10.1002/gcc.22444 Herranz, 2014, A NOTCH1-driven MYC enhancer promotes T cell development, transformation and acute lymphoblastic leukemia, Nat. Med., 20, 1130, 10.1038/nm.3665 Hunt, 2011, Mtg16/Eto2 contributes to murine T-cell development, Mol. Cell Biol., 31, 2544, 10.1128/MCB.01458-10 Knudsen, 2015, ERG promotes the maintenance of hematopoietic stem cells by restricting their differentiation, Genes Dev., 29, 1915, 10.1101/gad.268409.115 Leung, 2013, Uncoupling VEGFA functions in arteriogenesis and hematopoietic stem cell specification, Dev. Cell, 24, 144, 10.1016/j.devcel.2012.12.004 Lichti-Kaiser, 2012, Gli-similar proteins: their mechanisms of action, physiological functions, and roles in disease, Vitam Horm., 88, 141, 10.1016/B978-0-12-394622-5.00007-9 Liu, 2006, The tetramer structure of the Nervy homology two domain, NHR2, is critical for AML1/ETO's activity, Cancer Cell, 9, 249, 10.1016/j.ccr.2006.03.012 Loven, 2013, Selective inhibition of tumor oncogenes by disruption of super-enhancers, Cell, 153, 320, 10.1016/j.cell.2013.03.036 Lutterbach, 1998, The MYND motif is required for repression of basal transcription from the multidrug resistance 1 promoter by the t(8;21) fusion protein, Mol. Cell Biol., 18, 3604, 10.1128/MCB.18.6.3604 Maekawa, 2011, Direct reprogramming of somatic cells is promoted by maternal transcription factor Glis1, Nature, 474, 225, 10.1038/nature10106 Malinge, 2012, Increased dosage of the chromosome 21 ortholog Dyrk1a promotes megakaryoblastic leukemia in a murine model of Down syndrome, J. Clin. Invest., 122, 948, 10.1172/JCI60455 Marcucci, 2005, Overexpression of the ETS-related gene, ERG, predicts a worse outcome in acute myeloid leukemia with normal karyotype: a Cancer and Leukemia Group B study, J. Clin. Oncol., 23, 9234, 10.1200/JCO.2005.03.6137 Margolin, 2006, ARACNE: an algorithm for the reconstruction of gene regulatory networks in a mammalian cellular context, BMC Bioinformatics, 7, S7, 10.1186/1471-2105-7-S1-S7 Masetti, 2017, Hh/Gli antagonist in acute myeloid leukemia with CBFA2T3-GLIS2 fusion gene, J. Hematol. Oncol., 10, 26, 10.1186/s13045-017-0396-0 Mazumdar, 2015, Leukemia-associated cohesin mutants dominantly enforce stem cell programs and impair human hematopoietic progenitor differentiation, Cell Stem Cell, 17, 675, 10.1016/j.stem.2015.09.017 Meier, 2006, Novel binding partners of Ldb1 are required for haematopoietic development, Development, 133, 4913, 10.1242/dev.02656 Northcott, 2014, Enhancer hijacking activates GFI1 family oncogenes in medulloblastoma, Nature, 511, 428, 10.1038/nature13379 Novershtern, 2011, Densely interconnected transcriptional circuits control cell states in human hematopoiesis, Cell, 144, 296, 10.1016/j.cell.2011.01.004 Pells, 2015, Novel human embryonic stem cell regulators identified by conserved and distinct CpG island methylation state, PLoS One, 10, e0131102, 10.1371/journal.pone.0131102 Rainis, 2005, The proto-oncogene ERG in megakaryoblastic leukemias, Cancer Res., 65, 7596, 10.1158/0008-5472.CAN-05-0147 Rockova, 2011, Risk stratification of intermediate-risk acute myeloid leukemia: integrative analysis of a multitude of gene mutation and gene expression markers, Blood, 118, 1069, 10.1182/blood-2011-02-334748 Salek-Ardakani, 2009, ERG is a megakaryocytic oncogene, Cancer Res., 69, 4665, 10.1158/0008-5472.CAN-09-0075 Soler, 2010, The genome-wide dynamics of the binding of Ldb1 complexes during erythroid differentiation, Genes Dev., 24, 277, 10.1101/gad.551810 Stachura, 2006, Early block to erythromegakaryocytic development conferred by loss of transcription factor GATA-1, Blood, 107, 87, 10.1182/blood-2005-07-2740 Stadhouders, 2015, Control of developmentally primed erythroid genes by combinatorial co-repressor actions, Nat. Commun., 6, 8893, 10.1038/ncomms9893 Stankiewicz, 2009, ETS2 and ERG promote megakaryopoiesis and synergize with alterations in GATA-1 to immortalize hematopoietic progenitor cells, Blood, 113, 3337, 10.1182/blood-2008-08-174813 Stavropoulou, 2016, MLL-AF9 expression in hematopoietic stem cells drives a highly invasive AML expressing EMT-related genes linked to poor outcome, Cancer Cell, 30, 43, 10.1016/j.ccell.2016.05.011 Sun, 2013, A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis, Nature, 500, 93, 10.1038/nature12287 Thiollier, 2012, Characterization of novel genomic alterations and therapeutic approaches using acute megakaryoblastic leukemia xenograft models, J. Exp. Med., 209, 2017, 10.1084/jem.20121343 Tijssen, 2011, Genome-wide analysis of simultaneous GATA1/2, RUNX1, FLI1, and SCL binding in megakaryocytes identifies hematopoietic regulators, Dev. Cell, 20, 597, 10.1016/j.devcel.2011.04.008 van Riel, 2012, A novel complex, RUNX1-MYEF2, represses hematopoietic genes in erythroid cells, Mol. Cell Biol., 32, 3814, 10.1128/MCB.05938-11 Vasanth, 2011, Identification of nuclear localization, DNA binding, and transactivating mechanisms of Kruppel-like zinc finger protein Gli-similar 2 (Glis2), J. Biol. Chem., 286, 4749, 10.1074/jbc.M110.165951 Wechsler, 2002, Acquired mutations in GATA1 in the megakaryoblastic leukemia of Down syndrome, Nat. Genet., 32, 148, 10.1038/ng955 Whyte, 2013, Master transcription factors and mediator establish super-enhancers at key cell identity genes, Cell, 153, 307, 10.1016/j.cell.2013.03.035 Wichmann, 2007, Targeting the oligomerization domain of ETO interferes with RUNX1/ETO oncogenic activity in t(8;21)-positive leukemic cells, Cancer Res., 67, 2280, 10.1158/0008-5472.CAN-06-3360 Wichmann, 2010, Dimer-tetramer transition controls RUNX1/ETO leukemogenic activity, Blood, 116, 603, 10.1182/blood-2009-10-248047 Yan, 2009, RUNX1/AML1 DNA-binding domain and ETO/MTG8 NHR2-dimerization domain are critical to AML1-ETO9a leukemogenesis, Blood, 113, 883, 10.1182/blood-2008-04-153742 Yoshioka, 2013, Efficient generation of human iPSCs by a synthetic self-replicative RNA, Cell Stem Cell, 13, 246, 10.1016/j.stem.2013.06.001