ESI/MS investigation of routes to the formation of silver hydride nanocluster dications [Ag x H x−2 L y ] 2+ and gas-phase unimolecular chemistry of [Ag 10 H 8 L 6 ] 2+

International Journal of Mass Spectrometry - Tập 413 - Trang 97-105 - 2017
Marjan Krstić1, Athanasios Zavras2, George N. Khairallah2, Philippe Dugourd3, Vlasta Bonačić-Koutecký1,4, Richard A.J. O’Hair2
1Center of Excellence for Science and Technology—Integration of Mediterranean region (STIM) at Interdisciplinary Center for Advanced Science and Technology (ICAST), University of Split, Meštrovićevo šetalište 45, Split 21000, Croatia
2School of Chemistry and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, 30 Flemington Rd, Parkville, Victoria 3010, Australia
3Institut Lumière Matière, Université Lyon 1-CNRS, Université de Lyon, 69622 Villeurbanne cedex, France
4Humboldt-Universität Berlin, Institut für Chemie, Berlin 12489, Germany

Tài liệu tham khảo

Wiberg, 1952, Silver borohydride, AgBH4, Z. Naturforsch., 7b, 575, 10.1515/znb-1952-9-1022 Bommer, 1980, Single hydrogen-​boron bridged species: tris(methyldiphenylphosphine) complexes of silver(I) and copper(I) containing tetrahydroborate and (ethoxycarbonyl)​trihydroborate, Inorg. Chem., 19, 587, 10.1021/ic50205a003 Besora, 2008, Coordination modes and hydride exchange dynamics in transition metal tetrahydroborate complexes, Struct. Bond., 130, 149, 10.1007/430_2007_076 Cariati, 1965, Complexes of Group IB metals. II. Complexes of Ag(I) with triphenylphosphine and their reaction products with sodium tetrahydroborate, Gazz. Chim. Ital., 95, 201 Lobkovskii, 1981, Crystal and molecular structure of tetrahydroborato-​tris(methyldiphenylphosphino)​silver(I), Koord. Khim., 7, 307 Musaev, 1995, Does the tetrahydroborate species AuBH4 exist? Ab initio MO study of the structure and stability of CuBH4, AgBH4, and AuBH4, Organometallics, 14, 3327, 10.1021/om00007a037 Dhayal, 2013, A nanospheric polyhydrido copper cluster of elongated triangular orthobicupola array: liberation of H2 from solar energy, J. Am. Chem. Soc., 135, 4704, 10.1021/ja401576s Edwards, 2014, Chinese puzzle molecule: a 15 hydride, 28 copper atom nanoball, Angew. Chem., Int. Ed., 53, 7214, 10.1002/anie.201403324 Huertos, 2014, Phosphinothiolates as ligands for polyhydrido copper nanoclusters, Chem. Eur. J., 20, 16121, 10.1002/chem.201404763 Dhayal, 2015, Diselenophosphate-​induced conversion of an achiral [Cu20H11{S2P(OiPr)​2}​9] into a chiral [Cu20H11{Se2P(OiPr)​2}​9] polyhydrido nanocluster, Angew. Chem. Int. Ed., 54, 13604, 10.1002/anie.201506736 Dhayal, 2015, [Cu32(H)​20{S2P(OiPr)​2}​12]​: the largest number of hydrides recorded in a molecular nanocluster by neutron diffraction, Chem. Eur. J., 21, 8369, 10.1002/chem.201501122 Dhayal, 2016, Polyhydrido copper clusters: synthetic advances, structural diversity, and nanocluster-to-nanoparticle conversion, Acc. Chem. Res., 49, 86, 10.1021/acs.accounts.5b00375 Liu, 2010, Anion-​templated syntheses of octanuclear silver clusters from a silver dithiophosphate chain, Chem. Comm., 46, 4571, 10.1039/b923388a Liu, 2010, Stable silver(I) hydride complexes supported by diselenophosphate ligands, Inorg. Chem., 49, 468, 10.1021/ic901408n Liu, 2011, An eleven-​vertex deltahedron with hexacapped trigonal bipyramidal geometry, Chem. Comm., 47, 5831, 10.1039/c1cc10168d Tate, 2013, A dinuclear silver hydride and an umpolung reaction of CO2, Chem. Sci., 4, 3068, 10.1039/c3sc50896j Zavras, 2013, Synthesis, structure and gas-​phase reactivity of a silver hydride complex [Ag3{(PPh2)​2CH2}​3(μ3-​H)​(μ3-​Cl)​]​BF4, Angew. Chem. Int. Ed., 52, 8391, 10.1002/anie.201302436 Zavras, 2014, Synthesis, structural characterization, and gas-​phase unimolecular reactivity of the silver hydride nanocluster [Ag3((PPh2)​2CH2)​3(μ3-​H)​]​(BF4)​2, Inorg. Chem., 53, 7429, 10.1021/ic5007499 Tsui, 2008, Gold hydrides: reactions of a stable monomeric gold(I) hydride complex, Angew. Chem. Int. Ed., 47, 8937, 10.1002/anie.200803842 Schmidbaur, 2014, The gold–hydrogen bond, Au–H, and the hydrogen bond to gold Au⋯H–X, Chem. Soc. Rev., 43, 345, 10.1039/C3CS60251F Zavras, 2015, Synthesis, structure and gas-phase reactivity of the mixed silver hydride borohydride nanocluster [Ag3(μ3-H)(μ3-BH4)LPh3]BF4 (LPh=bis(diphenylphosphino)methane), Nanoscale, 7, 18129, 10.1039/C5NR05690J Vazquez-Vazquez, 2009, Synthesis of small atomic copper clusters in microemulsions, Langmuir, 25, 8208, 10.1021/la900100w Desireddy, 2013, Ultrastable silver nanoparticles, Nature, 501, 399, 10.1038/nature12523 Yang, 2013, Crystal structure of a luminescent thiolated Ag nanocluster with an octahedral Ag64+ core, Chem. Commun., 49, 300, 10.1039/C2CC37347E Yang, 2013, All-thiol-stabilized Ag44 and Au12Ag32 nanoparticles with single-crystal structures, Nat. Comm., 4, 2422, 10.1038/ncomms3422 Yang, 2013, Stabilizing subnanometer Ag(0) nanoclusters by thiolate and diphosphine ligands and their crystal structures, Nanoscale, 5, 2674, 10.1039/c3nr34328f Dhayal, 2015, An [Ag21{S2P(OiPr)​2}​12]​+: eight-​electron superatom, Angew. Chem. Int. Ed., 54, 3702, 10.1002/anie.201410332 AbdulHalim, 2015, A Ag29(BDT)​12(TPP)​4: tetravalent nanocluster, J. Am. Chem. Soc., 137, 11970, 10.1021/jacs.5b04547 Joshi, 2015, [Ag25(SR)​18]​−: the “golden” silver nanoparticle, J. Am. Chem. Soc., 137, 11578, 10.1021/jacs.5b07088 2014, Historical introduction to gold colloids, clusters and nanoparticles, 161, 1 Gawande, 2016, Cu and Cu-based nanoparticles: synthesis and applications in catalysis, Chem. Rev., 116, 3722, 10.1021/acs.chemrev.5b00482 Polte, 2012, Formation mechanism of colloidal silver nanoparticles: analogies and differences to the growth of gold nanoparticles, ACS Nano, 6, 5791, 10.1021/nn301724z Wuithschick, 2013, Size-​controlled synthesis of colloidal silver nanoparticles based on mechanistic understanding, Chem. Mater., 25, 4679, 10.1021/cm401851g Van Hyning, 1998, Formation mechanisms and aggregation behavior of borohydride reduced silver particles, Langmuir, 14, 7034, 10.1021/la980325h Seo, 2009, The characterization of borohydride-​stabilized nanosilvers in laponite sol using 1 H NMR: its ligand exchange reactions with MUA and TOP, Bull. Korean Chem. Soc., 30, 2651, 10.5012/bkcs.2009.30.11.2651 Perez-Juste, 2005, Gold nanorods: synthesis, characterization and applications, Coord. Chem. Rev., 249, 1870, 10.1016/j.ccr.2005.01.030 Grzelczak, 2008, Shape control in gold nanoparticle synthesis, Chem. Soc. Rev., 37, 1783, 10.1039/b711490g Sardar, 2009, Gold nanoparticles: past, present, and future, Langmuir, 25, 13840, 10.1021/la9019475 Liu, 2013, [Ag7(H){E2P(OR)2}6] (E=Se, S): precursors for the fabrication of silver nanoparticles, Inorg. Chem., 52, 2070, 10.1021/ic302482p Zavras, 2014, Gas phase formation, structure and reactivity of gold cluster ions, 162, 139 Lu, 2015, Application of mass spectrometry in the synthesis and characterization of metal nanoclusters, Anal. Chem., 87, 10659, 10.1021/acs.analchem.5b00848 Bertino, 2006, Facile syntheses of monodisperse ultra-small Au clusters, J. Phys. Chem. B, 110, 21416, 10.1021/jp065227g Bergeron, 2007, Ligand dissociation and core fission from diphosphine-protected gold clusters, J. Phys. Chem. C, 111, 8195, 10.1021/jp0712811 Golightly, 2007, Impact of swapping ethyl for phenyl groups on diphosphine-protected undecagold, J. Phys. Chem. C, 111, 14625, 10.1021/jp076375p Bergeron, 2008, Ligand exchange reactions in the formation of diphosphine-protected gold clusters, J. Phys. Chem. C, 112, 12808, 10.1021/jp804046e Pettibone, 2010, Synthetic approach for tunable, size-selective formation of monodisperse, diphosphine-protected gold nanoclusters, J. Phys. Chem. Lett., 1, 2536, 10.1021/jz1009339 Olivares, 2014, Investigating the synthesis of ligated metal clusters in solution using a flow reactor and electrospray ionization mass spectrometry, J. Phys. Chem. A, 118, 8464, 10.1021/jp501809r Hudgens, 2011, Reaction mechanism governing formation of 1,3-bis(diphenylphosphino)propane-protected gold nanoclusters, Inorg. Chem., 50, 10178, 10.1021/ic2018506 Pettibone, 2012, Reaction network governing diphosphine-protected gold nanocluster formation from nascent cationic platforms, Phys. Chem. Chem. Phys., 14, 4142, 10.1039/c2cp22865c Pettibone, 2012, Predictive gold nanocluster formation controlled by metal-ligand complexes, Small, 8, 715, 10.1002/smll.201101777 Girod, 2014, Formation and characterisation of the silver hydride nanocluster cation [Ag3H2((Ph2P)2CH2)]+ and its release of hydrogen, Chem. Eur. J., 20, 16626, 10.1002/chem.201404110 Clark, 2015, Bis(dimethylphosphino)methane-ligated silver chloride, cyanide and hydride cluster cations: synthesis and gas-phase unimolecular reactivity, Int. J. Mass Spectrom., 378, 86, 10.1016/j.ijms.2014.07.015 Daly, 2015, Gas-phase VUV photoionization and photofragmentation of the silver deuteride nanocluster [Ag10D8L6]2+ (L=bis(diphenylphosphino)methane). A joint experimental and theoretical study, Phys. Chem. Chem. Phys., 17, 25772, 10.1039/C5CP01160D Robinson, 2012, Gold mediated C–I bond activation of iodobenzene, Angew. Chem. Int. Ed., 51, 3812, 10.1002/anie.201108502 Robinson, 2012, Synthesis and gas-phase uni- and bi- molecular reactivity of bisphosphine ligated gold clusters, [AuxLy]n+, Int. J. Mass Spectrom., 330–332, 109, 10.1016/j.ijms.2012.07.005 Zavras, 2013, Bis(diphenylphosphino)methane ligated gold cluster cations: synthesis and gas phase unimolecular reactivity, Int. J. Mass Spectrom., 354–355, 242, 10.1016/j.ijms.2013.05.034 Johnson, 2014, Size-dependent stability toward dissociation and ligand binding energies of phosphine ligated gold cluster ions, Chem. Sci., 5, 3275, 10.1039/c4sc00849a Johnson, 2015, Cationic gold clusters ligated with differently substituted phosphines: effect of substitution on ligand reactivity and binding, Phys. Chem. Chem. Phys., 17, 14636, 10.1039/C5CP01686J Feketeová,, 2008, Intercluster chemistry of protonated and sodiated betaine dimers upon collision induced dissociation and electron induced dissociation, Eur. J. Mass Spectrom., 14, 107, 10.1255/ejms.911 TURBOMOLE V7. 0, 2015 Perdew, 1996, Generalized gradient approximation made simple, Phys. Rev. Lett., 77, 3865, 10.1103/PhysRevLett.77.3865 Eichkorn, 1995, Auxiliary basis sets to approximate Coulomb potentials, Chem. Phys. Lett., 242, 652, 10.1016/0009-2614(95)00838-U Andrae, 1990, Energy-​adjusted ab initio pseudopotentials for the second and third row transition elements, Theor. Chim. Acta, 77, 123, 10.1007/BF01114537 Weigend, 2005, Balanced basis sets of split valence, triple zeta valence and quadruple zeta valence quality for H to Rn: design and assessment of accuracy, Phys. hem. Chem. Phys., 7, 3297, 10.1039/b508541a Douglas, 2005, Linear ion traps in mass spectrometry, Mass Spectrom. Rev., 24, 1, 10.1002/mas.20004 Tsipis, 2004, Aromatic gold and silver ‘rings': hydrosilver(i) and hydrogold(I) analogues of aromatic hydrocarbons, J. Am. Chem. Soc., 126, 12916, 10.1021/ja0469277 Rabin, 1990, Mass spectrometric investigation of nonstoichiometric silver-fluorine cluster compounds AgnFm (0≤m≤n), zeitschr, Phys. Chem., 169, 85 Rabin, 1991, Silver-halogen cluster compounds AgnXm (n≥2; 0≤m≤n; X=F, Br), Zeitschr. Phys. D: At. Mol Cl., 19, 401 L’Hermite, 2001, Evidence for trimers in the evaporation in silver bromide clusters, Eur. Phys. J., D16, 77 L’Hermite, 2001, Metastable fragmentation of silver bromide clusters, Eur. Phys. J., D14, 323 Fagerquist, 1991, ”Mixed” metallic-ionic clusters of silver/silver iodide, J. Phys. Chem., 95, 9169, 10.1021/j100176a026 Fagerquist, 1993, Adhesion of silver iodide molecules to gaseous metallic silver cluster cations, J. Phys. Chem., 97, 6598, 10.1021/j100127a007 Fagerquist, 1995, Enhancement of metallic silver monomer evaporation by the adhesion of polar molecules to silver nanocluster ions, J. Phys. Chem., 99, 7723, 10.1021/j100019a061 Jerger, 1993, A novel desorption mechanism of (AgnIn−1)+ cluster ions, Zeitschr. Phys. D, 26, 181 Khairallah, 2005, Gas phase synthesis and reactivity of Agn+ and Ag(n−1)+ cluster cations, Dalton Trans., 2702, 10.1039/b505645b Khairallah, 2008, ’Gas phase synthesis, structure and unimolecular reactivity of silver iodide cluster cations, AgnIm+ (n=2–5, 0<m<n), Dalton Trans., 2956, 10.1039/b719274f Rabin, 1993, Second ionization potentials of selected silver and gold clusters, Chem. Phys. Lett., 201, 265, 10.1016/0009-2614(93)85068-Y Halder, 2012, Double and triple ionization of silver clusters by electron impact, J. Phys. Condens. Matter, 24, 104009, 10.1088/0953-8984/24/10/104009 Krückeberg, 1997, Time resolved photofragmentation of Aun+ and Agn+ clusters (n=9,21), Hyperfine Interact., 108, 107, 10.1023/A:1012634023288 Ziegler, 1998, Dissociation pathways of doubly and triply charged gold clusters, Hyperfine Interact., 115, 171, 10.1023/A:1012661008519 Krückeberg, 1997, Low-energy decay pathways of doubly charged silver clusters (Agn2+ (N=9–24), Z. Phys. D, 40, 341, 10.1007/s004600050223 Krückeberg, 2000, Decay pathway determination of even-​size dicationic silver clusters: Ag162+ and Ag182+ revisited by pre-​precursor selection and sequential decay, Chem. Phys., 262, 105, 10.1016/S0301-0104(00)00213-5 Kruckeberg, 1999, Experimental dissociation energies of metal cluster dications and their interpretation in a liquid-​drop model with empirical corrections, Phys. Rev. A, 60, 1251, 10.1103/PhysRevA.60.1251 Luo, 2014, Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)–thiolate complexes to evolution of Au25 nanoclusters, J. Am. Chem. Soc., 136, 10577, 10.1021/ja505429f Mulfinger, 2007, Synthesis and study of silver nanoparticles, J. Chem. Educ., 84, 322, 10.1021/ed084p322 Song, 2009, Preparation of colloidal silver nanoparticles by chemical reduction method, Kor. J. Chem. Eng., 26, 153, 10.1007/s11814-009-0024-y Hinks, 2011, Mechanistic study of the production of silver nanoparticles Hinks, 2011, 50