ESA’s next-generation gravity mission concepts

Roger Haagmans1, Christian Siemes2, Luca Massotti3, Olivier Carraz3, Pierluigi Silvestrin1
1ESA - European Space Agency, Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands
2Delft University of Technology, Kluyverweg 1, 2629, HS Delft, the Netherlands
3RHEA for ESA – European Space Agency, Keplerlaan 1, 2201 AZ, Noordwijk, The Netherlands

Tóm tắt

AbstractThe paper addresses the preparatory studies of future ESA mission concepts devoted to improve our understanding of the Earth’s mass change phenomena causing temporal variations in the gravity field, at different temporal and spatial scales, due to ice mass changes of ice sheets and glaciers, continental water cycles, ocean masses dynamics and solid Earth deformations. The ESA initiatives started in 2003 with a study on observation techniques for solid Earth missions and continued through several studies focusing on the satellite system, technology development for propulsion and distance metrology, preferred mission concepts, the attitude and orbit control system, as well as the optimization of the satellite constellation. These activities received precious inputs from the GOCE, GRACE and GRACE-FO missions. More recently, several studies related to new sensor concepts based on cold atom interferometry (CAI) were conducted, mainly focusing on technology development for different instrument configurations (GOCE-like and GRACE-like) and including validation activities, e.g. a first successful airborne survey with a CAI gravimeter. The latest results concerning the preferred satellite architectures and constellations, payload design and estimated science performance will be presented as well as remaining open issues for future concepts.

Từ khóa


Tài liệu tham khảo

Abich K et al (2019) In-Orbit Performance of the GRACE Follow-On Laser Ranging Interferometer. Phys Rev Lett 123:031101. https://doi.org/10.1103/PhysRevLett.123.031101

Abrykosov P, Pail R, Gruber T, Zahzam N, Bresson A, Hardy E, Christophe B, Bidel Y, Carraz O, Siemes C (2019) Impact of a novel hybrid accelerometer on satellite gravimetry performance. Adv Space Res 63:3235–3248. https://doi.org/10.1016/j.asr.2019.01.034

Bender P, Wiese D, Nerem R (2008) A possible dual-grace mission with 90 degree and 63 degree inclination orbits. In: Proceedings of the 3rd International Symposium on Formation Flying, Missions and Technologies. ESA/ESTEC, Noordwijk, pp 1–6

Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A, Rouxel D, Lequentrec-Lalancette MF (2018) Absolute marine gravimetry with matter-wave interferometry. Nat Comm 9:627. https://doi.org/10.1038/s41467-018-03040-2

Carraz O, Siemes C, Massotti L, Haagmans R, Silvestrin P (2014) A Spaceborne gravity gradiometer concept based on cold atom interferometers for measuring earth’s gravity field. Micrograv Sci Tech 26:139–145

Christophe B, Foulon B, Liorzou F, Lebat V, Boulanger D, Huynh P-A, Zahzam N, Bidel Y, Bresson A (2019) Status of development of the future accelerometers for next generation gravity missions. In: Freymueller J, Sánchez L (eds) International Symposium on Advancing Geodesy in a Changing World, International Association of Geodesy Symposia, Springer, Cham. https://doi.org/10.1007/1345_2018_42

Dionisio S, Anselmi A, Bonino L, Cesare S, Massotti L, Silvestrin P (2018a) The “Next Generation Gravity Mission” challenges, consolidation of the system concepts and technological innovations. https://doi.org/10.2514/6.2018-2495

Dionisio S, Anselmi A, Cesare S, Novara C, Colangelo L, Massotti L, Silvestrin P (2018b) System and AOCS challenges for the design consolidation of the next generation gravity mission. In: Proceedings of the 2018 AIAA Guidance, Navigation, and Control Conference, Kissimmee. https://doi.org/10.2514/6.2018-0869

Douch K, Wu H, Schubert C, Müller J, Pereira dos Santos F (2018) Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery. Adv Space Res 61:1307–1323. https://doi.org/10.1016/j.asr.2017.12.005

Flechtner F, Neumayer K-H, Dahle C, Dobslaw H, Fagiolini E, Raimondo J-C, Güntner A (2016) What can be expected from the GRACE-FO laser ranging interferometer for earth science applications? Surv Geophys 37:453–470. https://doi.org/10.1007/s10712-015-9338-y

Floberghagen R, Fehringer M, Lamarre D, Muzi D, Frommknecht B, Steiger C, Piñeiro J, da Costa A (2011) Mission design, operation and exploitation of the gravity field and steady-state ocean circulation explorer mission. J Geod 85:749–758. https://doi.org/10.1007/s00190-011-0498-3

Hauk M, Pail R (2018) Treatment of ocean tide aliasing in the context of a next generation gravity field mission. Geophys J Int 214:345–365. https://doi.org/10.1093/gji/ggy145

Kornfeld RP, Arnold BW, Gross MA, Dahya NT, Klipstein WM, Gath PF, Bettadpur S (2019) GRACE-FO: the gravity recovery and climate experiment follow-on mission. J Spacecraft Rockets 56:931–951. https://doi.org/10.2514/1.A34326

Nicklaus K, Cesare S, Massotti L, Bonino L, Mottini S, Pisani M, Silvestrin P (2018) Laser metrology concept consolidation for NGGM. In: Proceedings of the International Conference on Space Optics 2018, Chania. https://doi.org/10.1117/12.2536071

Pail R, Bingham R, Braitenberg C, Dobslaw H, Eicker A, Güntner A, Horwath M, Ivins E, Longuevergne L, Panet I, Wouters B (2015) Science and user needs for observing global mass transport to understand global change and to benefit society. Surv Geophys 36:743–772. https://doi.org/10.1007/s10712-015-9348-9

Sheard BS, Heinzel G, Danzmann K, Shaddock DA, Klipstein WM, Folkner WM (2012) Intersatellite laser ranging instrument for the GRACE follow-on mission. J Geod 86:1083–1095. https://doi.org/10.1007/s00190-012-0566-3

Silvestrin P, Carnicero Dominguez B, Haagmans R, Massotti L, Regan A, Siemes C (2015) Satellite formations and constellations for synergetic missions: a paradigm for international cooperation in earth observation. In: Proceedings of the 66th International Astronautical Congress, Jerusalem

Tapley BD, Bettadpur S, Watkins M, Reigber C (2004) The gravity recovery and climate experiment: mission overview and early results. Geophys Res Lett 31:L09607. https://doi.org/10.1029/2004GL019920

Trimeche A, Battelier B, Becker D, Bertoldi A, Bouyer P, Braxmaier C, Charron E, Corgier R, Cornelius M, Douch K, Gaaloul N, Herrmann S, Müller J, Rasel E, Schubert C, Wu H, Pereira dos Santos F (2019) Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Class Quant Grav 36:215004. https://doi.org/10.1088/1361-6382/ab4548

Wiese D, Visser P, Nerem R (2011) Estimating low resolution gravity fields at short time intervals to reduce temporal aliasing errors. Adv Space Res 48:1094–1107. https://doi.org/10.1016/j.asr.2011.05.027