EPR and magnetism of the nanostructured natural carbonaceous material shungite

Physics and Chemistry of Minerals - Tập 37 - Trang 237-247 - 2009
Maria Aldona Augustyniak-Jabłokow1, Yurii V. Yablokov1, Bartłomiej Andrzejewski1, Wojciech Kempiński1, Szymon Łoś1, Krzysztof Tadyszak1, Mikhail Y. Yablokov2, Valentin A. Zhikharev3
1Institute of Molecular Physics, PAS, Poznan, Poland
2N.S. Enikolopov Institute of Synthetic Polymer Materials, RAS, Moscow, Russia
3Kazan Technological University, Kazan, Russia

Tóm tắt

The X-band EPR and magnetic susceptibility in the temperature range 4.2–300 K study of the shungite-I, natural nanostructured material from the deposit of Shunga are reported. Obtained results allow us to assign the EPR signal to conduction electrons, estimate their number, N P, and evaluate the Pauli paramagnetism contribution to shungite susceptibility. A small occupation (~5%) of the localized nonbonding π states in the zigzag edges of the open-ended graphene-like layers and/or on σ (sp 2+x ) orbitals in the curved parts of the shungite globules has been also revealed. The observed temperature dependence of the EPR linewidth can be explained by the earlier considered interaction of conduction π electrons with local phonon modes associated with the vibration of peripheral carbon atoms of the open zigzag-type edges and with peripheral carbon atoms cross-linking different nanostructures. The relaxation time T 2 and diffusion time T D are found to have comparable values (2.84 × 10−8 and 1.73 × 10−8 s at 5.2 K, respectively), and similar dependence on temperature. The magnetic measurements have revealed the suppression of orbital diamagnetism due to small amount of large enough fragments of the graphene layers.

Từ khóa


Tài liệu tham khảo

Andersson OE, Prasad BLV, Sato H, Enoki T, Hishiyama Y, Kaburagi Y, Yoshikawa M, Bandow S (1998) Structure and electronic properties of graphite nanoparticles. Phys Rev B 58:16387–16395. doi:10.1103/PhysRevB.58.16387

Avdeev MV, Tropin TV, Aksenov VL, Rosta R, Garamus VM, Rozhkova NN (2006) Pore structures in shungites as revealed by small-angle neutron scattering. Carbon 44:954–961. doi:10.1016/j.carbon.2005.10.010

Bandow S (1996) Magnetic properties of nested carbon nanostructures studied by electron spin resonance and magnetic susceptibility measurements. J Appl Phys 80:1020–1027. doi:10.1063/1.362835

Bandow S, Kokai F, Takahashi K, Yudasaka M, Iijima S (2001) Unique magnetism observed in single-wall carbon nanohorns. Appl Phys A 73:281–285. doi:10.1007/s003390100794

Berezkin VI, Konstantinov PP, Kholodkevich SV (1997) Hall effect in the natural glassy carbon of schungites. Phys Solid State 39:1590–1593. doi:10.1134/1.1129903 (Fiz Tverd Tela 39:1783–1786)

Buseck PR, Galdobina LP, Kovalevski VV, Rozhkova NN, Valley JW, Zaidelberg AZ (1997) Shungites; the C-rich rocks of Karelia, Russia. Can Mineral 35:1363–1378

Dresselhaus MS, Dresselhaus G, Eklund PC (1995) Science of fullerenes and carbon nanotubes. Academic Press, New York

Dyson FJ (1955) Electron spin resonance absorption in metals. II. Theory of electron diffusion, the skin effect. Phys Rev 98:349–359. doi:10.1103/PhysRev.98.349

Elser V, Haddon RC (1987) Magnetic behavior of icosahedral C60. Phys Rev A 36:4579–4584. doi:10.1103/PhysRevA.36.4579

Feher G, Kip AF (1955) Electron spin resonance in metals. I. Experimental. Phys Rev 98:337–348. doi:10.1103/PhysRev.98.337

Filippov MM, Cherevko NK, Golubek EA (2007) Higher anthraxolites. Geol Ore Depos 49:624–629. doi:10.1134/S1075701507070203

Fujita M, Wakabayashi K, Nakada K, Kasakabe K (1996) Peculiar localized state at zigzag graphite edge. J Phys Soc Jpn 65:1920–1923. doi:10.1143/JPSJ.65.1920

Golubev YA, Kovaleva OV, Yushkin NP (2008) Observations and morphological analysis of supermolecular structure of natural bitumens by atomic force microscopy. Fuel 87:32–38. doi:10.1016/j.fuel.2007.04.005

Haddon RC (1995) Magnetism of the carbon allotropes. Nature 378:249–253. doi:10.1038/378249a0

Harris PJF (1999) Carbon nanotubes and related structures: new materials for the 21th century. Cambridge UP, New York

Heremans J, Olk CH, Morelli DT (1994) Magnetic susceptibility of carbon structures. Phys Rev B 49:15122–15125. doi:10.1103/PhysRevB.49.15122

Kelly BT (1981) Physics of graphite. Applied Science Publishers, London

Khabibullin BM, Kharakhash’yan EG (1974) Conduction-electron paramagnetic resonance in metals. Sov Phys Uspekhi 16:806–818. doi:10.1070/PU1974v016n06ABEH004091 [(1973) Usp Fiz Nauk 111:483–505]

Kotosonov AS (1986) Diamagnetism of quasi-two-dimensional graphites. JETP Lett 43:37–40 (Pis’ma Zh Eksp Teor Fiz 43:30–32)

Kotosonov AS (1991) Diamagnetism of carbon fibres. Sov Phys Solid State 33:1477–1483 (Fiz Tv Tela 33:2616–2621)

Kotosonov AS, Kuvshinnikov SV (1997) Diamagnetism of some quasi-two-dimensional graphites and multiwall carbon nanotubes. Phys Lett A 229:377–380. doi:10.1016/S0375-9601(97)00229-6

Kotosonov AS, Shilo DV (1998) Electron spin resonance study of carbon nanotubes. Carbon 36:1649–1651. doi:10.1016/S0008-6223(98)00159-6

Kovalevski VV (1994) Structure of shungite carbon. Russ J Inorg Chem 39:28–32 (Zh Neorg Khim 39:31–35)

Kovalevski VV, Buseck PR, Cowley JM (2001) Comparison of carbon in shungite rocks to other natural carbons: an X-ray and TEM study. Carbon 39:243–256. doi:10.1016/S0008-6223(00)00120-2

Ling MF, Finlayson TR, Raston CL (1999) Nonlinear field-dependent susceptibilies of C60 and carbon nanotubes. Aust J Phys 52:913–918. doi:10.1071/PH98098

McClure JW (1956) Diamagnetism of graphite. Phys Rev 104:666–671. doi:10.1103/PhysRev.104.666

Melezhik VA, Filippov MM, Romashkin AE (2004) A giant palaeoproterozoic deposit of shungite in NW Russia: genesis and practical applications. Ore Geol Rev 24:135–154. doi:10.1016/j.oregeorev.2003.08.003

Mrozowski S (1965) Electron spin resonance in neutron-irradiated and in doped polycrystalline graphite. Part I. Carbon 3:305–320. doi:10.1016/0008-6223(65)90065-5

Nakada K, Fujita M, Dresselhaus G, Dresselhaus MS (1996) Edge state in graphene ribbons: nanometer size effect and edge shape dependence. Phys Rev B 54:17954–17961. doi:10.1103/PhysRevB.54.17954

Noto K, Saito K, Kawamura K, Tsuzuku T (1975) Diamagnetism of glassy carbons. Jpn J Appl Phys 14:480–486. doi:10.1143/JJAP.14.480

Osipov VY, Enoki T, Takai K, Takahara K, Endo M, Hayashi T, Hishiyama Y, Kaburagi Y, Vul AY (2006) Magnetic and high resolution TEM studies of nanographite derived from nanodiamond. Carbon 44:1225–1234. doi:10.1016/j.carbon.2005.10.047

Parfen’eva LS, Smirnov IA, Rozhkova NN, Zaidenberg AZ, Ezhovskii A, Mukha Ya, Miserek Kh (1995) Thermal conductivity of amorphous shungite carbon. Phys Solid State 37:941–944 (Fiz Tverd Tela 37:1729–1735

Parfeneva LS, Smirnov I A, Zaidelberg AZ, Rozhkova NN, Stefanovich GB (1994) Electric conductivity of shungitic carbon. Phys Solid State 36:129–130. (Fiz Tverd Tela 36:234–325)

Ruoff RS, Beach D, Cuomo J, McGuire T, Whetten RL, Diederich F (1991) Confirmation of a vanishingly small ring-current magnetic susceptibility of icosahedral buckminsterfullerene. J Phys Chem 95:3457–3459. doi:10.1021/j100162a004

Singer LS, Lewis IC (1982) Applications of ESR to carbonaceous material. Appl Spectrosc 36:52–57. doi:10.1366/0003702824638944

Tomita S, Sakurai T, Ohta H, Fujii M, Hayashi S (2001) Structure and electronic properties of carbon onions. J Chem Phys 114:7477–7482. doi:10.1063/1.1360197

van Vleck JH (1927) On dielectric constants and magnetic susceptibilities in the new quantum mechanics Part I. A general proof of the Langevin–Debye formula. Phys Rev 29:727–744. doi:10.1103/PhysRev.30.31

Wagoner G (1960) Spin resonance of charge carriers in graphite. Phys Rev 118:647–653. doi:10.1103/PhysRev.118.647

Wakabayashi K, Fujita M, Ajiki H, Sigrist M (1999) Electronic and magnetic properties of nanographite ribbons. Phys Rev B 59:8271–8282. doi:10.1103/PhysRevB.59.8271

Wallace PR (1947) The band theory of graphite. Phys Rev 71:622–634. doi:10.1103/PhysRev.71.622

Yablokov MY, Augustyniak-Jabłokow MA, Kempiński W, Stankowski J, Yablokov YV (2006) Paramagnetic resonance of shungite—a natural nano-structured carbonaceous material. Phys Status Solidi B 243:R66–R68. doi:10.1002/pssb.200642226