ENSO modes of the equatorial Pacific Ocean in observations and CMIP5 models

Springer Science and Business Media LLC - Tập 43 - Trang 1285-1301 - 2013
Bryan C. Weare1
1Atmospheric Science Program, Land, Air and Water Resources, University of California, Davis, USA

Tóm tắt

El Niño/Southern Oscillation (ENSO) is the predominant interannual variability of the global climate system. How might ENSO change in a warmer world? The dominant two Combined Empirical Orthogonal Functions (CEOF) of the equatorial ocean temperature and zonal and vertical motion identify two modes that shown a transition in the eastern Pacific from a warming eastward/downward motion to a cooling westward/upward flow. These results also suggest consistent changes to the west and at depths down to 300 m. These dominate CEOFs provide a compact tool for assessing Coupled Model Intercomparison Project Phase 5 ocean model output for both the recent historical period and for the latter part of the twenty first century. Most of the analyzed models replicate well the spatial patterns of the dominant observational CEOF modes, but nearly always underestimate the magnitudes. Comparing model output for the twentieth and twenty first centuries there is very little change between the spatial patterns of the ENSO modes of the two periods. This lack of response to climate change is shown to be partly related to competing influences of climatic changes in the mean ocean circulation.

Tài liệu tham khảo

Ashok K, Yamagata T (2009) The El Niño with a difference. Nature 461:481–484 Carton JA, Giese BS (2008) A reanalysis of ocean climate using Simple Ocean Data Assimilation (SODA). Mon Weather Rev 136:2999–3017 Collins M, An S-I, Cai W, Ganachaud A, Guilyardi E, Jin F-F, Jochum M, Lengaigne M, Power S, Timmermann A, Vecchi G, Wittenberg A (2010) The impact of global warming on the tropical Pacific Ocean and El Niño. Nat Geosci 3:391–397 DiNezio PN, Kirtman BP, Clement AC, Lee S-K, Vecchi GA, Wittenberg A (2012) Mean climate controls on the simulated response of ENSO to increasing greenhouse gases. J. Clim 25:7399–7420 Gill AE (1980) Some simple solutions for heat induce tropical circulation. Q J Roy Meteorol Soc 106:447–462 Glantz MH (2001) Currents of change. Cambridge University Press, Cambridge, p 252 Gourcuff C, Lherminier P, Mercier H, Le Traon PY (2011) Altimetry combined with hydrography for ocean transport estimation. J Atmos Ocean Technol 28:1324–1337 Griffies SM, Harrison MJ, Pacanowski RC, Rosati A (2004) Technical guide to MOM4. GFDL Ocean Group Technical Report No. 5. NOAA/Geophysical Fluid Dynamics Laboratory. Available online at http://www.gfdl.noaa.gov/~fms Guilyardi E, Bellenger H, Collins M, Ferrett S, Cai W, Wittenberg A (2012) A first look at ENSO in CMIP5. CLIVAR Exch 58:29–32 Hayes SP, Mangum LJ, Picaut J, Sumi A, Takeuchi K (1991) TOGA TAO: a moored array for real-time measurements in the tropical Pacific Ocean. Bull Am Meteorol Soc 72:339–347 Huang B, Xue Y, Zhang D, Kumar A, McPhadden MJ (2010) The NCEP GODAS ocean analysis of the tropical Pacific mixed layer heat budget on seasonal to interannual time scales. J. Clim 23:4901–4925 Johnson ES, Bonjean F, Lagerloef GSE, Gunn JT, Mithcum GT (2007) Validation and error analysis of OSCAR sea surface currents. J Atmos Ocean Technol 24:688–701 Kanamitsu M, Ebisuzaki W, Woollen J, Yang S-K, Hnilo JJ, Fiorino M, Potter GL (2002) NCEP-DOE AMIP-II reanalysis (R-2). Bull Am Meteorol Soc 83:1631–1643 Kutzbach JE (1967) Empirical eigenvectors of sea-level pressure, surface temperature and precipitation complexes over North America. J Appl Meteorol 6:791–802 Latif M, Keenlyside NS (2009) El Nino/Southern Oscillation response to global warming. Proc Nat Acad Sci USA 106:20578–20583. doi:10.1073/pnas.0710860105 Latif M, Anderson D, Barnett T, Cane M, Kleeman R, Leetmaa A, O’Brien J, Rosati A, Schneider E (1998) A review of the predictability and prediction of ENSO. J Geophys Res 103:14375–14393 Neelin JD (2011) Climate change and climate modeling. Cambridge University Press, Cambridge, p 282 Neelin JD, Battisti DS, Hirst AC, Jin F-F, Wakata Y, Zebiak SE (1998) ENSO theory. J Geophys Res 103:14261–14290 North GR, Bell TL, Cahalan RF, Jones FJ (1982) Sampling errors in estimation of empirical orthogonal functions. Mon Weather Rev 110:699–706 Pacanowski RC, Griffies SM (1999) MOM 3.0 manual. NOAA/Geophysical Fluid Dynamics Laboratory Rep., p 680 Philander SG (1990) El Niño, La Niña, and the southern oscillation. Academic Press, New York, p 293 Stevenson SL (2012) Significant changes to ENSO strength and impacts in the twenty-first century: results from CMIP5. Geophys Res Lett 39:L17703–L17708. doi:10.1029/2012GL052759 Su J, Zhang R, Li T, Rong X, Kug J-S, Hong C-C (2010) Causes of El Niño and La Niña amplitude asymmetry in the equatorial eastern Pacific. J Clim 23:605–617 Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res 106:7183–7192. doi:10.1029/2000JD900719 Trenberth KE (1997) The definition of El Niño. Bull Am Meteorol Soc 78:2771–2777 von Storch H, Zwier FW (1999) Statistical analysis in climate research. Cambridge, Cambridge University Press, p 484 Wang C, Fiedler PC (2006) ENSO variability and the eastern tropical Pacific: a review. Prog Oceanogr 69:239–266 Weare BC (2012) El Niño teleconnections in CMIP5 models. Clim Dyn. doi:10.1007/s00382-012-1537-3 Xue Y, Huang B, Hu Z-Z, Kumar A, Wen C, Behringer D, Nadiga S (2011) An assessment of oceanic variability in the NCEP climate forecast system reanalysis. Clim Dyn 37:2511–2539