EEG based emotion recognition using minimum spanning tree
Tóm tắt
Từ khóa
Tài liệu tham khảo
Harischandra J, Perera M (2012) Intelligent emotion recognition system using brain signals (EEG). In: 2012 IEEE EMBS conference on biomedical engineering and sciences (IECBES). IEEE, pp 454–459. https://doi.org/10.1109/IECBES.2012.6498050
Morin C (2011) Neuromarketing: the new science of consumer behavior. Society 48(2):131–135. https://doi.org/10.1007/s12115-010-9408-1
Feng C, Li W, Hu J, Yu K, Zhao D (2020) BCEFCM_S: bias correction embedded fuzzy c-means with spatial constraint to segment multiple spectral images with intensity inhomogeneities and noises. Signal Process 168:107347. https://doi.org/10.1016/j.sigpro.2019.107347
Fieker M, Moritz S, Köther U, Jelinek L (2016) Emotion recognition in depression: an investigation of performance and response confidence in adult female patients with depression. Psychiatry Res 242:226–232. https://doi.org/10.1016/j.psychres.2016.05.037
Ricciardi L, Visco-Comandini F, Erro R, Morgante F, Bologna M, Fasano A, Ricciardi D, Edwards MJ, Kilner J (2017) Facial emotion recognition and expression in Parkinson’s disease: an emotional mirror mechanism? PLoS ONE 12(1):e0169110. https://doi.org/10.1371/journal.pone.0169110
Fridenson-Hayo S, Berggren S, Lassalle A, Tal S, Pigat D, Bölte S, Baron-Cohen S, Golan O (2016) Basic and complex emotion recognition in children with autism: cross-cultural findings. Mol Autism 7(1):52. https://doi.org/10.1186/s13229-016-0113-9
Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, Taylor JG (2001) Emotion recognition in human-computer interaction. IEEE Signal Proc Mag 18(1):32–80. https://doi.org/10.1109/79.911197
Novak MJ, Warren JD, Henley SM, Draganski B, Frackowiak RS, Tabrizi SJ (2012) Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease. Brain 135(4):1165–1179. https://doi.org/10.1093/brain/aws024
Yamada M, Murai T, Sato W, Namiki C, Miyamoto T, Ohigashi Y (2005) Emotion recognition from facial expressions in a temporal lobe epileptic patient with ictal fear. Neuropsychologia 43(3):434–441. https://doi.org/10.1016/j.neuropsychologia.2004.06.019
Dodich A, Cerami C, Canessa N, Crespi C, Marcone A, Arpone M, Realmuto S, Cappa SF (2014) Emotion recognition from facial expressions: a normative study of the Ekman 60-faces test in the Italian population. Neurol Sci 35(7):1015–1021. https://doi.org/10.1007/s10072-014-1631-x
McCubbin JA, Merritt MM, Sollers JJ 3rd, Evans MK, Zonderman AB, Lane RD, Thayer JF (2011) Cardiovascular-emotional dampening: the relationship between blood pressure and recognition of emotion. Psychosom Med 73(9):743–750. https://doi.org/10.1097/PSY.0b013e318235ed55
Balconi M, Vanutelli ME (2016) Hemodynamic (fNIRS) and EEG (N200) correlates of emotional inter-species interactions modulated by visual and auditory stimulation. Sci Rep 6:23083. https://doi.org/10.1038/srep23083
Selvaraj J, Murugappan M, Wan K, Yaacob S (2013) Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst. Biomed Eng Online 12:44–44. https://doi.org/10.1186/1475-925X-12-44
Nwe TL, Foo SW, De Silva LC (2003) Speech emotion recognition using hidden Markov models. Speech Commun 41(4):603–623. https://doi.org/10.1016/S0167-6393(03)00099-2
Nakasone A, Prendinger H, Ishizuka M (2013) Emotion recognition from electromyography and skin conductance. In: Proceedings of the 5th international workshop on biosignal interpretation. Citeseer, pp 219–222
Yin Z, Zhao M, Wang Y, Yang J, Zhang J (2017) Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput Methods Prog Biol 140:93–110. https://doi.org/10.1016/j.cmpb.2016.12.005
Golnar-Nik P, Farashi S, Safari M-S (2019) The application of EEG power for the prediction and interpretation of consumer decision-making: a neuromarketing study. Physiol Behav 207:90–98. https://doi.org/10.1016/j.physbeh.2019.04.025
Dennis TA, Hajcak G (2009) The late positive potential: a neurophysiological marker for emotion regulation in children. J Child Psychol Psychiatry 50(11):1373–1383. https://doi.org/10.1111/j.1469-7610.2009.02168.x
Konstantinidis EI, Frantzidis CA, Pappas C, Bamidis PD (2012) Real time emotion aware applications: a case study employing emotion evocative pictures and neuro-physiological sensing enhanced by graphic processor units. Comput Methods Prog Biol 107(1):16–27. https://doi.org/10.1016/j.cmpb.2012.03.008
Demaree HA, Everhart DE, Youngstrom EA, Harrison DW (2005) Brain lateralization of emotional processing: historical roots and a future incorporating “dominance”. Behav Cognit Neurosci Rev 4(1):3–20. https://doi.org/10.1177/1534582305276837
Khosrowabadi R, Bin Abdul Rahman AW (2010) Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram. In: 2010 international conference on information and communication technology for the Muslim world (ICT4M). IEEE, pp E102–E107. https://doi.org/10.1109/ICT4M.2010.5971942
Othman M, Wahab A, Khosrowabadi R (2009) MFCC for robust emotion detection using EEG. In: 2009 IEEE 9th Malaysia international conference on communications (MICC), 2009. IEEE, pp 98–101. https://doi.org/10.1109/MICC.2009.5431473
Kumar N, Khaund K, Hazarika SM (2016) Bispectral analysis of EEG for emotion recognition. Procedia Comput Sci 84:31–35. https://doi.org/10.1016/j.procs.2016.04.062
Lee G, Kwon M, Kavuri Sri S, Lee M (2014) Emotion recognition based on 3D fuzzy visual and EEG features in movie clips. Neurocomputing 144:560–568. https://doi.org/10.1016/j.neucom.2014.04.008
Khosrowabadi R, Quek C, Ang KK, Wahab A (2014) ERNN: a biologically inspired feedforward neural network to discriminate emotion from EEG signal. IEEE Trans Neural Netw Learn Syst 25(3):609–620. https://doi.org/10.1109/TNNLS.2013.2280271
Mohammadi Z, Frounchi J, Amiri M (2016) Wavelet-based emotion recognition system using EEG signal. Neural Comput Appl. https://doi.org/10.1007/s00521-015-2149-8
Farashi S (2018) Spike detection using a multiresolution entropy based method. Biomed Eng Biomed Tech 63(4):361–376. https://doi.org/10.1515/bmt-2016-0182
Farashi S, Abolhassani MD, Salimpour Y, Alirezaie J (2010) Combination of PCA and undecimated wavelet transform for neural data processing. In: 2010 annual international conference of the IEEE engineering in medicine and biology. IEEE, pp 6666–6669. https://doi.org/10.1109/IEMBS.2010.5627158
Zhang Y, Ji X, Zhang S (2016) An approach to EEG-based emotion recognition using combined feature extraction method. Neurosci Lett 633:152–157. https://doi.org/10.1016/j.neulet.2016.09.037
Liu Y, Sourina O, Nguyen MK (2011) Real-time EEG-based emotion recognition and its applications. In: Transactions on computational science XII. Springer, pp 256–277. https://doi.org/10.1007/978-3-642-22336-5_13
Petrantonakis PC, Hadjileontiadis LJ (2010) Emotion recognition from EEG using higher order crossings. IEEE Trans Inf Theory 14(2):186–197. https://doi.org/10.1109/TITB.2009.2034649
Eryilmaz H, Van De Ville D, Schwartz S, Vuilleumier P (2011) Impact of transient emotions on functional connectivity during subsequent resting state: a wavelet correlation approach. Neuroimage 54(3):2481–2491. https://doi.org/10.1016/j.neuroimage.2010.10.021
Khosrowabadi R, Quek HC, Wahab A, Ang KK (2010) EEG-based emotion recognition using self-organizing map for boundary detection. In: 2010 20th international conference on pattern recognition (ICPR). IEEE, pp 4242–4245. https://doi.org/10.1109/ICPR.2010.1031
Atkinson J, Campos D (2016) Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst Appl 47:35–41. https://doi.org/10.1016/j.eswa.2015.10.049
Costa T, Rognoni E, Galati D (2006) EEG phase synchronization during emotional response to positive and negative film stimuli. Neurosci Lett 406(3):159–164. https://doi.org/10.1016/j.neulet.2006.06.039
Xing M, Tadayonnejad R, MacNamara A, Ajilore O, DiGangi J, Phan KL, Leow A, Klumpp H (2017) Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder. NeuroImage Clin 13:24–32. https://doi.org/10.1016/j.nicl.2016.11.009
Feng C, Zhao D, Huang M (2016) Segmentation of longitudinal brain MR images using bias correction embedded fuzzy c-means with non-locally spatio-temporal regularization. J Vis Commun Image Represent 38:517–529. https://doi.org/10.1016/j.jvcir.2016.03.027
Feng C, Zhao D, Huang M (2016) Image segmentation using CUDA accelerated non-local means denoising and bias correction embedded fuzzy c-means (BCEFCM). Signal Process 122:164–189. https://doi.org/10.1016/j.sigpro.2015.12.007
Vourkas M, Karakonstantaki E, Simos PG, Tsirka V, Antonakakis M, Vamvoukas M, Stam C, Dimitriadis S, Micheloyannis S (2014) Simple and difficult mathematics in children: a minimum spanning tree EEG network analysis. Neurosci Lett 576:28–33. https://doi.org/10.1016/j.neulet.2014.05.048
Fraga González G, Van der Molen MJW, Žarić G, Bonte M, Tijms J, Blomert L, Stam CJ, Van der Molen MW (2016) Graph analysis of EEG resting state functional networks in dyslexic readers. Clin Neurophysiol 127(9):3165–3175. https://doi.org/10.1016/j.clinph.2016.06.023
Fraschini M, Demuru M, Hillebrand A, Cuccu L, Porcu S, Di Stefano F, Puligheddu M, Floris G, Borghero G, Marrosu F (2016) EEG functional network topology is associated with disability in patients with amyotrophic lateral sclerosis. Sci Rep 6:38653. https://doi.org/10.1038/srep38653
Alessandra C, Matteo D, Luca D, Gian Luca M, Matteo F (2016) Minimum spanning tree and k -core decomposition as measure of subject-specific EEG traits. Biomed Phys Eng Express 2(1):017001
Demuru M, Fara F, Fraschini M (2013) Brain network analysis of EEG functional connectivity during imagery hand movements. J Integr Neurosci 12(04):441–447. https://doi.org/10.1142/S021963521350026X
van Dellen E, de Waal H, Flier WM, Lemstra AW, Slooter AJ, Smits LL, van Straaten EC, Stam CJ, Scheltens P (2015) Loss of EEG network efficiency is related to cognitive impairment in dementia with Lewy bodies. Movement Disord 30(13):1785–1793. https://doi.org/10.1002/mds.26309
van Dellen E, Douw L, Hillebrand A, de Witt Hamer PC, Baayen JC, Heimans JJ, Reijneveld JC, Stam CJ (2014) Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis. Neuroimage 86:354–363. https://doi.org/10.1016/j.neuroimage.2013.10.010
Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16(12):606–617. https://doi.org/10.1016/j.tics.2012.10.007
Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34(7):1015–1022. https://doi.org/10.1016/j.neubiorev.2009.12.006
Zhang X, Kendrick KM, Zhou H, Zhan Y, Feng J (2012) A computational study on altered theta-gamma coupling during learning and phase coding. PLoS ONE 7(6):e36472. https://doi.org/10.1371/journal.pone.0036472
Muller MM, Keil A, Gruber T, Elbert T (1999) Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin Neurophysiol 110(11):1913–1920. https://doi.org/10.1016/S1388-2457(99)00151-0
Luo Q, Mitchell D, Cheng X, Mondillo K, McCaffrey D, Holroyd T, Carver F, Coppola R, Blair J (2009) Visual awareness, emotion, and gamma band synchronization. Cereb Cortex 19(8):1896–1904. https://doi.org/10.1093/cercor/bhn216
Russell JA, Weiss A, Mendelsohn GA (1989) Affect grid: a single-item scale of pleasure and arousal. J Pers Soc Psychol 57(3):493. https://doi.org/10.1037/0022-3514.57.3.493
Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, Pun T, Nijholt A, Patras I (2012) Deap: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31. https://doi.org/10.1109/T-AFFC.2011.15
Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29(2–3):169–195. https://doi.org/10.1016/S0165-0173(98)00056-3
Stam CJ (2000) Brain dynamics in theta and alpha frequency bands and working memory performance in humans. Neurosci Lett 286(2):115–118. https://doi.org/10.1016/s0304-3940(00)01109-5
Davidson RJ, Ekman P, Saron CD, Senulis JA, Friesen WV (1990) Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology. Int J Pers Soc Psychol 58(2):330–341. https://doi.org/10.1037/0022-3514.58.2.330
Candra H, Yuwono M, Chai R, Handojoseno A, Elamvazuthi I, Nguyen HT, Su S (2015) Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In: Proceeding of the conference of the IEEE engineering in medicine and biology society, 2015. IEEE, pp 7250–7253. https://doi.org/10.1109/EMBC.2015.7320065
Bowyer SM (2016) Coherence a measure of the brain networks: past and present. Neuropsychiatr Electrophysiol 2(1):1. https://doi.org/10.1186/s40810-015-0015-7
Na SH, Jin S-H, Kim SY, Ham B-J (2002) EEG in schizophrenic patients: mutual information analysis. Clin Neurophysiol 113(12):1954–1960. https://doi.org/10.1016/S1388-2457(02)00197-9
Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2011) Network modelling methods for FMRI. Neuroimage 54(2):875–891. https://doi.org/10.1016/j.neuroimage.2010.08.063
Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307. https://doi.org/10.1016/j.clinph.2004.04.029
Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multichannel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193. https://doi.org/10.1002/hbm.20346
Vinck M, Oostenveld R, Van Wingerden M, Battaglia F, Pennartz CM (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4):1548–1565. https://doi.org/10.1016/j.neuroimage.2011.01.055
Nolte G, Ziehe A, Krämer N, Popescu F, Müller K-R (2010) Comparison of granger causality and phase slope index. In: Causality: objectives and assessment, pp 267–276
Pettie S, Ramachandran V (2002) An optimal minimum spanning tree algorithm. J ACM 49(1):16–34. https://doi.org/10.1007/3-540-45022-X_6
Newman ME (2005) A measure of betweenness centrality based on random walks. Social Netw 27(1):39–54. https://doi.org/10.1016/j.socnet.2004.11.009
Boersma M, Smit DJ, Boomsma DI, De Geus EJ, Delemarre-van de Waal HA, Stam CJ (2013) Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation. Brain Connect 3(1):50–60. https://doi.org/10.1089/brain.2012.0106
Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191. https://doi.org/10.3758/bf03193146
Jie X, Cao R, Li L (2014) Emotion recognition based on the sample entropy of EEG. Bio-Med Mater Eng 24(1):1185–1192. https://doi.org/10.3233/bme-130919
Güntekin B, Başar E (2010) Event-related beta oscillations are affected by emotional eliciting stimuli. Neurosci Lett 483(3):173–178. https://doi.org/10.1016/j.neulet.2010.08.002
Esslen M, Pascual-Marqui R, Hell D, Kochi K, Lehmann D (2004) Brain areas and time course of emotional processing. Neuroimage 21(4):1189–1203. https://doi.org/10.1016/j.neuroimage.2003.10.001
Lee Y-Y, Hsieh S (2014) Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 9(4):e95415. https://doi.org/10.1371/journal.pone.0095415
Wang N, Wei L, Li Y (2012) Analysis of characteristics of alpha electroencephalogram during the interaction between emotion and cognition based on Granger causality. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29(6):1021–1026
Killgore WDS, Yurgelun-Todd DA (2007) The right-hemisphere and valence hypotheses: could they both be right (and sometimes left)? Soc Cogn Affect Neurosci 2(3):240–250. https://doi.org/10.1093/scan/nsm020
Bos DO (2006) EEG-based emotion recognition. In: The influence of visual and auditory stimuli, pp 1–17
Hu X, Yu J, Song M, Yu C, Wang F, Sun P, Wang D, Zhang D (2017) EEG correlates of ten positive emotions. Front Hum Neurosci 11:26. https://doi.org/10.3389/fnhum.2017.00026
Brooks JR, Garcia JO, Kerick SE, Vettel JM (2016) Differential functionality of right and left parietal activity in controlling a motor vehicle. Front Syst Neurosci 10:106. https://doi.org/10.3389/fnsys.2016.00106
Engels AS, Heller W, Mohanty A, Herrington JD, Banich MT, Webb AG, Miller GA (2007) Specificity of regional brain activity in anxiety types during emotion processing. Psychophysiology 44(3):352–363. https://doi.org/10.1111/j.1469-8986.2007.00518.x