EEG based emotion recognition using minimum spanning tree

Sajjad Farashi1, Reza Khosrowabadi2
1Hamadan University of Medical Sciences, Hamadan, Iran
2Institute for Cognitive and Brain Sciences, Shahid Beheshti University GC, Tehran, Iran.

Tóm tắt

Từ khóa


Tài liệu tham khảo

Harischandra J, Perera M (2012) Intelligent emotion recognition system using brain signals (EEG). In: 2012 IEEE EMBS conference on biomedical engineering and sciences (IECBES). IEEE, pp 454–459. https://doi.org/10.1109/IECBES.2012.6498050

Morin C (2011) Neuromarketing: the new science of consumer behavior. Society 48(2):131–135. https://doi.org/10.1007/s12115-010-9408-1

Feng C, Li W, Hu J, Yu K, Zhao D (2020) BCEFCM_S: bias correction embedded fuzzy c-means with spatial constraint to segment multiple spectral images with intensity inhomogeneities and noises. Signal Process 168:107347. https://doi.org/10.1016/j.sigpro.2019.107347

Fieker M, Moritz S, Köther U, Jelinek L (2016) Emotion recognition in depression: an investigation of performance and response confidence in adult female patients with depression. Psychiatry Res 242:226–232. https://doi.org/10.1016/j.psychres.2016.05.037

Ricciardi L, Visco-Comandini F, Erro R, Morgante F, Bologna M, Fasano A, Ricciardi D, Edwards MJ, Kilner J (2017) Facial emotion recognition and expression in Parkinson’s disease: an emotional mirror mechanism? PLoS ONE 12(1):e0169110. https://doi.org/10.1371/journal.pone.0169110

Fridenson-Hayo S, Berggren S, Lassalle A, Tal S, Pigat D, Bölte S, Baron-Cohen S, Golan O (2016) Basic and complex emotion recognition in children with autism: cross-cultural findings. Mol Autism 7(1):52. https://doi.org/10.1186/s13229-016-0113-9

Cowie R, Douglas-Cowie E, Tsapatsoulis N, Votsis G, Kollias S, Fellenz W, Taylor JG (2001) Emotion recognition in human-computer interaction. IEEE Signal Proc Mag 18(1):32–80. https://doi.org/10.1109/79.911197

Novak MJ, Warren JD, Henley SM, Draganski B, Frackowiak RS, Tabrizi SJ (2012) Altered brain mechanisms of emotion processing in pre-manifest Huntington's disease. Brain 135(4):1165–1179. https://doi.org/10.1093/brain/aws024

Yamada M, Murai T, Sato W, Namiki C, Miyamoto T, Ohigashi Y (2005) Emotion recognition from facial expressions in a temporal lobe epileptic patient with ictal fear. Neuropsychologia 43(3):434–441. https://doi.org/10.1016/j.neuropsychologia.2004.06.019

Dodich A, Cerami C, Canessa N, Crespi C, Marcone A, Arpone M, Realmuto S, Cappa SF (2014) Emotion recognition from facial expressions: a normative study of the Ekman 60-faces test in the Italian population. Neurol Sci 35(7):1015–1021. https://doi.org/10.1007/s10072-014-1631-x

McCubbin JA, Merritt MM, Sollers JJ 3rd, Evans MK, Zonderman AB, Lane RD, Thayer JF (2011) Cardiovascular-emotional dampening: the relationship between blood pressure and recognition of emotion. Psychosom Med 73(9):743–750. https://doi.org/10.1097/PSY.0b013e318235ed55

Balconi M, Vanutelli ME (2016) Hemodynamic (fNIRS) and EEG (N200) correlates of emotional inter-species interactions modulated by visual and auditory stimulation. Sci Rep 6:23083. https://doi.org/10.1038/srep23083

Selvaraj J, Murugappan M, Wan K, Yaacob S (2013) Classification of emotional states from electrocardiogram signals: a non-linear approach based on hurst. Biomed Eng Online 12:44–44. https://doi.org/10.1186/1475-925X-12-44

Nwe TL, Foo SW, De Silva LC (2003) Speech emotion recognition using hidden Markov models. Speech Commun 41(4):603–623. https://doi.org/10.1016/S0167-6393(03)00099-2

Nakasone A, Prendinger H, Ishizuka M (2013) Emotion recognition from electromyography and skin conductance. In: Proceedings of the 5th international workshop on biosignal interpretation. Citeseer, pp 219–222

Yin Z, Zhao M, Wang Y, Yang J, Zhang J (2017) Recognition of emotions using multimodal physiological signals and an ensemble deep learning model. Comput Methods Prog Biol 140:93–110. https://doi.org/10.1016/j.cmpb.2016.12.005

Golnar-Nik P, Farashi S, Safari M-S (2019) The application of EEG power for the prediction and interpretation of consumer decision-making: a neuromarketing study. Physiol Behav 207:90–98. https://doi.org/10.1016/j.physbeh.2019.04.025

Dennis TA, Hajcak G (2009) The late positive potential: a neurophysiological marker for emotion regulation in children. J Child Psychol Psychiatry 50(11):1373–1383. https://doi.org/10.1111/j.1469-7610.2009.02168.x

Konstantinidis EI, Frantzidis CA, Pappas C, Bamidis PD (2012) Real time emotion aware applications: a case study employing emotion evocative pictures and neuro-physiological sensing enhanced by graphic processor units. Comput Methods Prog Biol 107(1):16–27. https://doi.org/10.1016/j.cmpb.2012.03.008

Demaree HA, Everhart DE, Youngstrom EA, Harrison DW (2005) Brain lateralization of emotional processing: historical roots and a future incorporating “dominance”. Behav Cognit Neurosci Rev 4(1):3–20. https://doi.org/10.1177/1534582305276837

Khosrowabadi R, Bin Abdul Rahman AW (2010) Classification of EEG correlates on emotion using features from Gaussian mixtures of EEG spectrogram. In: 2010 international conference on information and communication technology for the Muslim world (ICT4M). IEEE, pp E102–E107. https://doi.org/10.1109/ICT4M.2010.5971942

Othman M, Wahab A, Khosrowabadi R (2009) MFCC for robust emotion detection using EEG. In: 2009 IEEE 9th Malaysia international conference on communications (MICC), 2009. IEEE, pp 98–101. https://doi.org/10.1109/MICC.2009.5431473

Kumar N, Khaund K, Hazarika SM (2016) Bispectral analysis of EEG for emotion recognition. Procedia Comput Sci 84:31–35. https://doi.org/10.1016/j.procs.2016.04.062

Lee G, Kwon M, Kavuri Sri S, Lee M (2014) Emotion recognition based on 3D fuzzy visual and EEG features in movie clips. Neurocomputing 144:560–568. https://doi.org/10.1016/j.neucom.2014.04.008

Khosrowabadi R, Quek C, Ang KK, Wahab A (2014) ERNN: a biologically inspired feedforward neural network to discriminate emotion from EEG signal. IEEE Trans Neural Netw Learn Syst 25(3):609–620. https://doi.org/10.1109/TNNLS.2013.2280271

Mohammadi Z, Frounchi J, Amiri M (2016) Wavelet-based emotion recognition system using EEG signal. Neural Comput Appl. https://doi.org/10.1007/s00521-015-2149-8

Farashi S (2018) Spike detection using a multiresolution entropy based method. Biomed Eng Biomed Tech 63(4):361–376. https://doi.org/10.1515/bmt-2016-0182

Farashi S, Abolhassani MD, Salimpour Y, Alirezaie J (2010) Combination of PCA and undecimated wavelet transform for neural data processing. In: 2010 annual international conference of the IEEE engineering in medicine and biology. IEEE, pp 6666–6669. https://doi.org/10.1109/IEMBS.2010.5627158

Zhang Y, Ji X, Zhang S (2016) An approach to EEG-based emotion recognition using combined feature extraction method. Neurosci Lett 633:152–157. https://doi.org/10.1016/j.neulet.2016.09.037

Liu Y, Sourina O, Nguyen MK (2011) Real-time EEG-based emotion recognition and its applications. In: Transactions on computational science XII. Springer, pp 256–277. https://doi.org/10.1007/978-3-642-22336-5_13

Petrantonakis PC, Hadjileontiadis LJ (2010) Emotion recognition from EEG using higher order crossings. IEEE Trans Inf Theory 14(2):186–197. https://doi.org/10.1109/TITB.2009.2034649

Eryilmaz H, Van De Ville D, Schwartz S, Vuilleumier P (2011) Impact of transient emotions on functional connectivity during subsequent resting state: a wavelet correlation approach. Neuroimage 54(3):2481–2491. https://doi.org/10.1016/j.neuroimage.2010.10.021

Khosrowabadi R, Quek HC, Wahab A, Ang KK (2010) EEG-based emotion recognition using self-organizing map for boundary detection. In: 2010 20th international conference on pattern recognition (ICPR). IEEE, pp 4242–4245. https://doi.org/10.1109/ICPR.2010.1031

Atkinson J, Campos D (2016) Improving BCI-based emotion recognition by combining EEG feature selection and kernel classifiers. Expert Syst Appl 47:35–41. https://doi.org/10.1016/j.eswa.2015.10.049

Costa T, Rognoni E, Galati D (2006) EEG phase synchronization during emotional response to positive and negative film stimuli. Neurosci Lett 406(3):159–164. https://doi.org/10.1016/j.neulet.2006.06.039

Xing M, Tadayonnejad R, MacNamara A, Ajilore O, DiGangi J, Phan KL, Leow A, Klumpp H (2017) Resting-state theta band connectivity and graph analysis in generalized social anxiety disorder. NeuroImage Clin 13:24–32. https://doi.org/10.1016/j.nicl.2016.11.009

Feng C, Zhao D, Huang M (2016) Segmentation of longitudinal brain MR images using bias correction embedded fuzzy c-means with non-locally spatio-temporal regularization. J Vis Commun Image Represent 38:517–529. https://doi.org/10.1016/j.jvcir.2016.03.027

Feng C, Zhao D, Huang M (2016) Image segmentation using CUDA accelerated non-local means denoising and bias correction embedded fuzzy c-means (BCEFCM). Signal Process 122:164–189. https://doi.org/10.1016/j.sigpro.2015.12.007

Vourkas M, Karakonstantaki E, Simos PG, Tsirka V, Antonakakis M, Vamvoukas M, Stam C, Dimitriadis S, Micheloyannis S (2014) Simple and difficult mathematics in children: a minimum spanning tree EEG network analysis. Neurosci Lett 576:28–33. https://doi.org/10.1016/j.neulet.2014.05.048

Fraga González G, Van der Molen MJW, Žarić G, Bonte M, Tijms J, Blomert L, Stam CJ, Van der Molen MW (2016) Graph analysis of EEG resting state functional networks in dyslexic readers. Clin Neurophysiol 127(9):3165–3175. https://doi.org/10.1016/j.clinph.2016.06.023

Fraschini M, Demuru M, Hillebrand A, Cuccu L, Porcu S, Di Stefano F, Puligheddu M, Floris G, Borghero G, Marrosu F (2016) EEG functional network topology is associated with disability in patients with amyotrophic lateral sclerosis. Sci Rep 6:38653. https://doi.org/10.1038/srep38653

Alessandra C, Matteo D, Luca D, Gian Luca M, Matteo F (2016) Minimum spanning tree and k -core decomposition as measure of subject-specific EEG traits. Biomed Phys Eng Express 2(1):017001

Demuru M, Fara F, Fraschini M (2013) Brain network analysis of EEG functional connectivity during imagery hand movements. J Integr Neurosci 12(04):441–447. https://doi.org/10.1142/S021963521350026X

van Dellen E, de Waal H, Flier WM, Lemstra AW, Slooter AJ, Smits LL, van Straaten EC, Stam CJ, Scheltens P (2015) Loss of EEG network efficiency is related to cognitive impairment in dementia with Lewy bodies. Movement Disord 30(13):1785–1793. https://doi.org/10.1002/mds.26309

van Dellen E, Douw L, Hillebrand A, de Witt Hamer PC, Baayen JC, Heimans JJ, Reijneveld JC, Stam CJ (2014) Epilepsy surgery outcome and functional network alterations in longitudinal MEG: a minimum spanning tree analysis. Neuroimage 86:354–363. https://doi.org/10.1016/j.neuroimage.2013.10.010

Klimesch W (2012) Alpha-band oscillations, attention, and controlled access to stored information. Trends Cogn Sci 16(12):606–617. https://doi.org/10.1016/j.tics.2012.10.007

Sauseng P, Griesmayr B, Freunberger R, Klimesch W (2010) Control mechanisms in working memory: a possible function of EEG theta oscillations. Neurosci Biobehav Rev 34(7):1015–1022. https://doi.org/10.1016/j.neubiorev.2009.12.006

Zhang X, Kendrick KM, Zhou H, Zhan Y, Feng J (2012) A computational study on altered theta-gamma coupling during learning and phase coding. PLoS ONE 7(6):e36472. https://doi.org/10.1371/journal.pone.0036472

Muller MM, Keil A, Gruber T, Elbert T (1999) Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin Neurophysiol 110(11):1913–1920. https://doi.org/10.1016/S1388-2457(99)00151-0

Luo Q, Mitchell D, Cheng X, Mondillo K, McCaffrey D, Holroyd T, Carver F, Coppola R, Blair J (2009) Visual awareness, emotion, and gamma band synchronization. Cereb Cortex 19(8):1896–1904. https://doi.org/10.1093/cercor/bhn216

Russell JA, Weiss A, Mendelsohn GA (1989) Affect grid: a single-item scale of pleasure and arousal. J Pers Soc Psychol 57(3):493. https://doi.org/10.1037/0022-3514.57.3.493

Koelstra S, Muhl C, Soleymani M, Lee J-S, Yazdani A, Ebrahimi T, Pun T, Nijholt A, Patras I (2012) Deap: a database for emotion analysis; using physiological signals. IEEE Trans Affect Comput 3(1):18–31. https://doi.org/10.1109/T-AFFC.2011.15

Klimesch W (1999) EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res Brain Res Rev 29(2–3):169–195. https://doi.org/10.1016/S0165-0173(98)00056-3

Stam CJ (2000) Brain dynamics in theta and alpha frequency bands and working memory performance in humans. Neurosci Lett 286(2):115–118. https://doi.org/10.1016/s0304-3940(00)01109-5

Davidson RJ, Ekman P, Saron CD, Senulis JA, Friesen WV (1990) Approach-withdrawal and cerebral asymmetry: emotional expression and brain physiology. Int J Pers Soc Psychol 58(2):330–341. https://doi.org/10.1037/0022-3514.58.2.330

Candra H, Yuwono M, Chai R, Handojoseno A, Elamvazuthi I, Nguyen HT, Su S (2015) Investigation of window size in classification of EEG-emotion signal with wavelet entropy and support vector machine. In: Proceeding of the conference of the IEEE engineering in medicine and biology society, 2015. IEEE, pp 7250–7253. https://doi.org/10.1109/EMBC.2015.7320065

Bowyer SM (2016) Coherence a measure of the brain networks: past and present. Neuropsychiatr Electrophysiol 2(1):1. https://doi.org/10.1186/s40810-015-0015-7

Na SH, Jin S-H, Kim SY, Ham B-J (2002) EEG in schizophrenic patients: mutual information analysis. Clin Neurophysiol 113(12):1954–1960. https://doi.org/10.1016/S1388-2457(02)00197-9

Smith SM, Miller KL, Salimi-Khorshidi G, Webster M, Beckmann CF, Nichols TE, Ramsey JD, Woolrich MW (2011) Network modelling methods for FMRI. Neuroimage 54(2):875–891. https://doi.org/10.1016/j.neuroimage.2010.08.063

Nolte G, Bai O, Wheaton L, Mari Z, Vorbach S, Hallett M (2004) Identifying true brain interaction from EEG data using the imaginary part of coherency. Clin Neurophysiol 115(10):2292–2307. https://doi.org/10.1016/j.clinph.2004.04.029

Stam CJ, Nolte G, Daffertshofer A (2007) Phase lag index: assessment of functional connectivity from multichannel EEG and MEG with diminished bias from common sources. Hum Brain Mapp 28(11):1178–1193. https://doi.org/10.1002/hbm.20346

Vinck M, Oostenveld R, Van Wingerden M, Battaglia F, Pennartz CM (2011) An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 55(4):1548–1565. https://doi.org/10.1016/j.neuroimage.2011.01.055

Nolte G, Ziehe A, Krämer N, Popescu F, Müller K-R (2010) Comparison of granger causality and phase slope index. In: Causality: objectives and assessment, pp 267–276

Pettie S, Ramachandran V (2002) An optimal minimum spanning tree algorithm. J ACM 49(1):16–34. https://doi.org/10.1007/3-540-45022-X_6

Newman ME (2005) A measure of betweenness centrality based on random walks. Social Netw 27(1):39–54. https://doi.org/10.1016/j.socnet.2004.11.009

Boersma M, Smit DJ, Boomsma DI, De Geus EJ, Delemarre-van de Waal HA, Stam CJ (2013) Growing trees in child brains: graph theoretical analysis of electroencephalography-derived minimum spanning tree in 5- and 7-year-old children reflects brain maturation. Brain Connect 3(1):50–60. https://doi.org/10.1089/brain.2012.0106

Faul F, Erdfelder E, Lang AG, Buchner A (2007) G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behav Res Methods 39(2):175–191. https://doi.org/10.3758/bf03193146

Jie X, Cao R, Li L (2014) Emotion recognition based on the sample entropy of EEG. Bio-Med Mater Eng 24(1):1185–1192. https://doi.org/10.3233/bme-130919

Güntekin B, Başar E (2010) Event-related beta oscillations are affected by emotional eliciting stimuli. Neurosci Lett 483(3):173–178. https://doi.org/10.1016/j.neulet.2010.08.002

Esslen M, Pascual-Marqui R, Hell D, Kochi K, Lehmann D (2004) Brain areas and time course of emotional processing. Neuroimage 21(4):1189–1203. https://doi.org/10.1016/j.neuroimage.2003.10.001

Lee Y-Y, Hsieh S (2014) Classifying different emotional states by means of EEG-based functional connectivity patterns. PLoS ONE 9(4):e95415. https://doi.org/10.1371/journal.pone.0095415

Wang N, Wei L, Li Y (2012) Analysis of characteristics of alpha electroencephalogram during the interaction between emotion and cognition based on Granger causality. Sheng Wu Yi Xue Gong Cheng Xue Za Zhi 29(6):1021–1026

Killgore WDS, Yurgelun-Todd DA (2007) The right-hemisphere and valence hypotheses: could they both be right (and sometimes left)? Soc Cogn Affect Neurosci 2(3):240–250. https://doi.org/10.1093/scan/nsm020

Bos DO (2006) EEG-based emotion recognition. In: The influence of visual and auditory stimuli, pp 1–17

Hu X, Yu J, Song M, Yu C, Wang F, Sun P, Wang D, Zhang D (2017) EEG correlates of ten positive emotions. Front Hum Neurosci 11:26. https://doi.org/10.3389/fnhum.2017.00026

Brooks JR, Garcia JO, Kerick SE, Vettel JM (2016) Differential functionality of right and left parietal activity in controlling a motor vehicle. Front Syst Neurosci 10:106. https://doi.org/10.3389/fnsys.2016.00106

Engels AS, Heller W, Mohanty A, Herrington JD, Banich MT, Webb AG, Miller GA (2007) Specificity of regional brain activity in anxiety types during emotion processing. Psychophysiology 44(3):352–363. https://doi.org/10.1111/j.1469-8986.2007.00518.x

Kuchinke L, Lux V (2012) Caffeine improves left hemisphere processing of positive words. PLoS ONE 7(11):e48487. https://doi.org/10.1371/journal.pone.0048487