EEG-based emotion recognition: Review of commercial EEG devices and machine learning techniques
Journal of King Saud University - Computer and Information Sciences - Tập 34 - Trang 4385-4401 - 2022
Tài liệu tham khảo
Acharya, 2016, American Clinical Neurophysiology Society Guideline 2: Guidelines for standard electrode position nomenclature, Neurodiagn. J., 56, 245, 10.1080/21646821.2016.1245558
Ackermann, P., Kohlschein, C., Bitsch, J.Á., Wehrle, K., Jeschke, S., 2016. EEG-based automatic emotion recognition: Feature extraction, selection and classification methods, in: 2016 IEEE 18th International Conference on E-Health Networking, Applications and Services, Healthcom 2016. https://doi.org/10.1109/HealthCom.2016.7749447.
Ahmad, R.F., Malik, A.S., Kamel, N., Amin, H., Zafar, R., Qayyum, A., Reza, F., 2015. Discriminating the different human brain states with EEG signals using Fractal dimension: A nonlinear approach, in: 2014 IEEE International Conference on Smart Instrumentation, Measurement and Applications, ICSIMA 2014. https://doi.org/10.1109/ICSIMA.2014.7047426.
Al-Galal, S.A.Y., Alshaikhli, I.F.T., Rahman, A.W.B.A., Dzulkifli, M.A., 2016. EEG-based Emotion Recognition while Listening to Quran Recitation Compared with Relaxing Music Using Valence-Arousal Model, in: Proceedings - 2015 4th International Conference on Advanced Computer Science Applications and Technologies, ACSAT 2015. https://doi.org/10.1109/ACSAT.2015.10..
Alazrai, 2018, EEG-based emotion recognition using quadratic time-frequency distribution, Sensors (Switzerland), 18, 2739, 10.3390/s18082739
Andreas Edgar Kothe, 2016, Artifact removal techniques with signal reconstruction, Google Patents
Asghar, 2019, EEG-based multi-modal emotion recognition using bag of deep features: An optimal feature selection approach, Sensors (Switzerland), 19, 5218, 10.3390/s19235218
Bairavi, 2018, EEG based emotion recognition system for special children, ACM Int. Conf. Proc. Ser.
Bhattacharyya, 2018, A novel approach for automated detection of focal EEG signals using empirical wavelet transform, Neural Comput. Appl., 29, 47, 10.1007/s00521-016-2646-4
Blanco, 2019, Single-trial cognitive stress classification using portable wireless electroencephalography, Sensors (Switzerland), 19, 499, 10.3390/s19030499
Bos, D.O., 2006. EEG-based emotion recognition. Influ. Vis. Audit. Stimuli. https://doi.org/10.1109/TBME.2010.2048568.
Bozhkov, L., Georgieva, P., Santos, I., Pereira, A., Silva, C., 2015. EEG-based subject independent affective computing models, in: Procedia Computer Science. https://doi.org/10.1016/j.procs.2015.07.314.
Bradley, 2007, The International Affective Picture System (IAPS) in the study of emotion and attention
Brazma, A., Hingamp, P., Quackenbush, J., Sherlock, G., Spellman, P., Stoeckert, C., Aach, J., Ansorge, W., Ball, C.A., Causton, H.C., Gaasterland, T., Glenisson, P., Holstege, F.C.P., Kim, I.F., Markowitz, V., Matese, J.C., Parkinson, H., Robinson, A., Sarkans, U., Schulze-Kremer, S., Stewart, J., Taylor, R., Vilo, J., Vingron, M., 2001. Minimum information about a microarray experiment (MIAME) - Toward standards for microarray data. Nat. Genet. https://doi.org/10.1038/ng1201-365.
Brody, 2008, Gender and emotion in context, Handb. Emot.
Brunia, C.H.M., Mocks, J., Van den Berg-Lenssen, M.C., Coelho, M., Coles, M.G.H., Elbert, T., Gasser, T., Gratton, G., Ifeachor, E.C., Jervis, B.W., Lutzenberger, W., Sroka, L., Van Blokland-Vogelesang, A.W., Van Driel, G., Woestenburg, J.C., Berg, P., McCallum, W.C., Dinh Tuan, P., Pocock, P. V., Roth, W.T., 1989. Correcting ocular artifacts in the EEG: A comparison of several methods. J. Psychophysiol.
Callan, D.E., Durantin, G., Terzibas, C., 2015. Classification of single-trial auditory events using dry-wireless EEG during real and motion simulated flight. Front. Syst. Neurosci. https://doi.org/10.3389/fnsys.2015.00011.
Cannon, 1927, The James-Lange theory of emotions: A critical examination and an alternative theory, Am. J. Psychol., 10.2307/1415404
Chai, 2017, A fast, efficient domain adaptation technique for cross-domain electroencephalography(EEG)-based emotion recognition, Sensors (Switzerland)
Chanel, G., Kierkels, J.J.M., Soleymani, M., Pun, T., 2009. Short-term emotion assessment in a recall paradigm. Int. J. Hum. Comput. Stud. https://doi.org/10.1016/j.ijhcs.2009.03.005.
Chao, 2018, Recognition of emotions using multichannel EEG data and DBN-GC-based ensemble deep learning framework, Comput. Intell. Neurosci., 2018, 1, 10.1155/2018/9750904
Chen, C.M., Wang, J.Y., 2018. Effects of online synchronous instruction with an attention monitoring and alarm mechanism on sustained attention and learning performance. Interact. Learn. Environ. https://doi.org/10.1080/10494820.2017.1341938.
Coan, J.A., Allen, J.J.B., McKnight, P.E., 2006. A capability model of individual differences in frontal EEG asymmetry. Biol. Psychol. https://doi.org/10.1016/j.biopsycho.2005.10.003.
Cohen, 2014, Analyzing Neural Time Series Data: Theory and Practice, MIT Press
Compumedics Neuroscan – World Leader in Functional Neuro-imaging [WWW Document], n.d. URL https://compumedicsneuroscan.com/ (accessed 5.4.20).
Damasio, A.R., Grabowski, T.J., Bechara, A., Damasio, H., Ponto, L.L.B., Parvizi, J., Hichwa, R.D., 2000. Subcortical and cortical brain activity during the feeling of self-generated emotions. Nat. Neurosci. https://doi.org/10.1038/79871.
Debener, 2012, How about taking a low-cost, small, and wireless EEG for a walk?, Psychophysiology, 49, 1617, 10.1111/j.1469-8986.2012.01471.x
Demenescu, L.R., Mathiak, K.A., Mathiak, K., 2014. Age-and gender-related variations of emotion recognition in pseudowords and faces. Exp. Aging Res. https://doi.org/10.1080/0361073X.2014.882210.
Deus, 2012, Translating standards into practice - One Semantic Web API for Gene Expression, J. Biomed. Inform., 45, 782, 10.1016/j.jbi.2012.03.002
Dietrich, A., Kanso, R., 2010. A review of EEG, ERP, and neuroimaging studies of creativity and insight. Psychol. Bull. https://doi.org/10.1037/a0019749.
Duan, 2013, Differential entropy feature for EEG-based emotion classification
EEG - ECG - Biosensors [WWW Document], n.d. URL http://neurosky.com/ (accessed 4.7.20).
EEGLAB [WWW Document], n.d. URL https://sccn.ucsd.edu/eeglab/index.php (accessed 5.2.20).
Ekman, 1994, The nature of emotion: Fundamental questions. Series in affective science
Ekman, 1987, Universals and cultural differences in the judgments of facial expressions of emotion, J. Pers. Soc. Psychol., 53, 712, 10.1037/0022-3514.53.4.712
EMOTIV [WWW Document], n.d. URL https://github.com/Emotiv (accessed 6.6.20).
EMOTIV | Brain Data Measuring Hardware and Software Solutions [WWW Document] 2020 (accessed 4.7.20) https://www.emotiv.com/.
EMOTIV EPOC+ 14-Channel Wireless EEG Headset | EMOTIV [WWW Document], n.d. URL https://www.emotiv.com/epoc/ (accessed 6.6.20).
EMOTIV EPOC X - 14 Channel Wireless EEG Headset | EMOTIV [WWW Document], n.d. URL https://www.emotiv.com/epoc-x/ (accessed 2.5.21).
EPOC Flex - 32-Channel Wireless EEG Device | EMOTIV [WWW Document], n.d. URL https://www.emotiv.com/epoc-flex/ (accessed 2.5.21).
Frey, J., 2016. Comparison of an open-hardware electroencephalography amplifier with medical grade device in brain-computer interface applications, in: PhyCS 2016 - Proceedings of the 3rd International Conference on Physiological Computing Systems. https://doi.org/10.5220/0005954501050114.
g.HIAMP | g.tec medical engineering [WWW Document], n.d. URL https://www.gtec.at/product/ghiamp/ (accessed 5.26.20).
Ganesh, S., Chinchani, A.M., Bhushan, A., Kanchan, D., Kubakaddi, S., 2018. Participant-dependent and participant-independent classification of emotions using EEG signals, in: Proceedings of the 2017 International Conference on Wireless Communications, Signal Processing and Networking, WiSPNET 2017. https://doi.org/10.1109/WiSPNET.2017.8299778.
Garrett, D., Peterson, D.A., Anderson, C.W., Thaut, M.H., 2003. Comparison of linear, nonlinear, and feature selection methods for EEG signal classification. IEEE Trans. Neural Syst. Rehabil. Eng. https://doi.org/10.1109/TNSRE.2003.814441
Gath, I., Geva, A.B., 1989. Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. https://doi.org/10.1109/34.192473
Gratton, G., Coles, M.G.H., Donchin, E., 1983. A new method for off-line removal of ocular artifact. Electroencephalogr. Clin. Neurophysiol. https://doi.org/10.1016/0013-4694(83)90135-9.
Grummett, T.S., Leibbrandt, R.E., Lewis, T.W., DeLosAngeles, D., Powers, D.M.W., Willoughby, J.O., Pope, K.J., Fitzgibbon, S.P., 2015. Measurement of neural signals from inexpensive, wireless and dry EEG systems. Physiol. Meas. https://doi.org/10.1088/0967-3334/36/7/1469.
Guger, C., Krausz, G., Allison, B.Z., Edlinger, G., 2012. Comparison of dry and gel based electrodes for P300 brain-computer interfaces. Front. Neurosci. https://doi.org/10.3389/fnins.2012.00060
Herwig, 2003, Using the international 10–20 EEG system for positioning of transcranial magnetic stimulation, Brain Topogr, 16, 95, 10.1023/B:BRAT.0000006333.93597.9d
Hjorth, B., 1970. EEG analysis based on time domain properties. Electroencephalogr. Clin. Neurophysiol. https://doi.org/10.1016/0013-4694(70)90143-4.
Hu, X., Chen, J., Wang, F., Zhang, D., 2019. Ten challenges for EEG-based affective computing. Brain Sci. Adv. https://doi.org/10.1177/2096595819896200
Huang, H., Xie, Q., Pan, J., He, Y., Wen, Z., Yu, R., Li, Y., 2019. An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness. IEEE Trans. Affect. Comput. https://doi.org/10.1109/taffc.2019.2901456
IMDb: Ratings, Reviews, and Where to Watch the Best Movies & TV Shows [WWW Document], n.d. URL https://www.imdb.com/ (accessed 5.2.20).
Insight Brainwear® 5 Channel Wireless EEG Headset | EMOTIV [WWW Document], n.d. URL https://www.emotiv.com/insight/ (accessed 5.20.20).
Inventado, P.S., Legaspi, R., Bui, T.D., Suarez, M., 2010. Predicting student’s appraisal of feedback in an ITS using previous affective states and continuous affect labels from EEG data, in: Proceedings of the 18th International Conference on Computers in Education: Enhancing and Sustaining New Knowledge Through the Use of Digital Technology in Education, ICCE 2010.
James, 1884, H.—What 18 an emotion? By Professor, Mind
Jatupaiboon, N., Pan-Ngum, S., Israsena, P., 2013. Real-time EEG-based happiness detection system. Sci. World J. https://doi.org/10.1155/2013/618649.
Javaid, M.M., Yousaf, M.A., Sheikh, Q.Z., Awais, M.M., Saleem, S., Khalid, M., 2015. Real-time EEG-based human emotion recognition, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-26561-2_22.
Jenke, R., Peer, A., Buss, M., 2014. Feature extraction and selection for emotion recognition from EEG. IEEE Trans. Affect. Comput. https://doi.org/10.1109/TAFFC.2014.2339834.
Jingru, 2019, Experimental research on emotion recognition based on brain-computer interface and brain waves, ACM Int. Conf. Proc. Ser., 10
Kamal Al-Qazzaz, 2017, Automatic artifact removal in EEG of normal and demented individuals using ICA-WT during working memory tasks, Sensors (Switzerland), 17, 1326, 10.3390/s17061326
Kanoga, 2019, Multi-scale dictionary learning for ocular artifact reduction from single-channel electroencephalograms, Neurocomputing, 347, 240, 10.1016/j.neucom.2019.02.060
Katsigiannis, S., Ramzan, N., 2018. DREAMER: A Database for Emotion Recognition Through EEG and ECG Signals from Wireless Low-cost Off-the-Shelf Devices. IEEE J. Biomed. Heal. Informatics. https://doi.org/10.1109/JBHI.2017.2688239
Kim, M.K., Kim, M., Oh, E., Kim, S.P., 2013. A review on the computational methods for emotional state estimation from the human EEG. Comput. Math. Methods Med. https://doi.org/10.1155/2013/573734.
Klimesch, 1999, EEG alpha and theta oscillations reflect cognitive and memory performance: A review and analysis, Brain Res. Rev., 29, 169, 10.1016/S0165-0173(98)00056-3
Koelstra, S., Mühl, C., Soleymani, M., Lee, J.S., Yazdani, A., Ebrahimi, T., Pun, T., Nijholt, A., Patras, I., 2012. DEAP: A database for emotion analysis; Using physiological signals. IEEE Trans. Affect. Comput. https://doi.org/10.1109/T-AFFC.2011.15
Koenig, T., Studer, D., Hubl, D., Melie, L., Strik, W.K., 2005. Brain connectivity at different time-scales measured with EEG. Philos. Trans. R. Soc. B Biol. Sci. https://doi.org/10.1098/rstb.2005.1649.
Kothe, C.A., Makeig, S., Onton, J.A., 2013. Emotion recognition from EEG during self-paced emotional imagery, in: Proceedings - 2013 Humaine Association Conference on Affective Computing and Intelligent Interaction, ACII 2013. https://doi.org/10.1109/ACII.2013.160
Kring, 1998, Sex differences in emotion: expression, experience, and physiology, J. Pers. Soc. Psychol., 74, 686, 10.1037/0022-3514.74.3.686
Krishna, A.H., Sri, A.B., Priyanka, K.Y.V.S., Taran, S., Bajaj, V., 2019. Emotion classification using EEG signals based on tunable-Q wavelet transform. IET Sci. Meas. Technol. https://doi.org/10.1049/iet-smt.2018.5237
Kulish, V., Sourin, A., Sourina, O., 2006. Human electroencephalograms seen as fractal time series: Mathematical analysis and visualization. Comput. Biol. Med. https://doi.org/10.1016/j.compbiomed.2004.12.003
Kumar, 2016, Bispectral analysis of EEG for emotion recognition, Procedia Comput. Sci., 84, 31, 10.1016/j.procs.2016.04.062
Lakhan, 2019, Consumer grade brain sensing for emotion recognition, IEEE Sens. J., 19, 9896, 10.1109/JSEN.2019.2928781
Lange, 1885, The mechanism of emotions, Classical Psychologists
Li, 2016, Novel passive ceramic based semi-dry electrodes for recording electroencephalography signals from the hairy scalp, Sensors Actuators, B Chem., 237, 167, 10.1016/j.snb.2016.06.045
Lim, 2012, A brain-computer interface based attention training program for treating attention deficit hyperactivity disorder, PLoS One, 7, e46692, 10.1371/journal.pone.0046692
Lin, Y.P., Wang, C.H., Jung, T.P., Wu, T.L., Jeng, S.K., Duann, J.R., Chen, J.H., 2010. EEG-based emotion recognition in music listening. IEEE Trans. Biomed. Eng. https://doi.org/10.1109/TBME.2010.2048568
Lin, Y.P., Wang, C.H., Wu, T.L., Jeng, S.K., Chen, J.H., 2009. EEG-based emotion recognition in music listening: A comparison of schemes for multiclass support vector machine, in: ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings. https://doi.org/10.1109/icassp.2009.4959627
Liu, 2014, EEG-based subject-dependent emotion recognition algorithm using fractal dimension, in
Liu, Y., Sourina, O., Nguyen, M.K., 2010. Real-time EEG-based human emotion recognition and visualization, in: Proceedings - 2010 International Conference on Cyberworlds, CW 2010. https://doi.org/10.1109/CW.2010.37
Liu, Y.J., Yu, M., Zhao, G., Song, J., Ge, Y., Shi, Y., 2018. Real-time movie-induced discrete emotion recognition from EEG signals. IEEE Trans. Affect. Comput. https://doi.org/10.1109/TAFFC.2017.2660485
Ludwig, 2009, Using a common average reference to improve cortical neuron recordings from microelectrode arrays, J. Neurophysiol., 101, 1679, 10.1152/jn.90989.2008
Lutzenberger, 1992, The scalp distribution of the fractal dimension of the EEG and its variation with mental tasks, Brain Topogr, 5, 27, 10.1007/BF01129967
Maskeliunas, R., Damasevicius, R., Martisius, I., Vasiljevas, M., 2016. Consumer-grade EEG devices: Are they usable for control tasks? PeerJ. https://doi.org/10.7717/peerj.1746
MATLAB - MathWorks - MATLAB & Simulink [WWW Document], n.d. URL https://uk.mathworks.com/products/matlab.html (accessed 5.2.20).
McKenzie, 1996, Time Series Analysis by Higher Order Crossings, J. R. Stat. Soc. Ser. A (Statistics Soc.), 159, 350, 10.2307/2983188
Mijović, B., De Vos, M., Gligorijević, I., Taelman, J., Van Huffel, S., 2010. Source separation from single-channel recordings by combining empirical-mode decomposition and independent component analysis. IEEE Trans. Biomed. Eng. https://doi.org/10.1109/TBME.2010.2051440
Mirkovic, B., Bleichner, M.G., De Vos, M., Debener, S., 2016. Target speaker detection with concealed EEG around the ear. Front. Neurosci. https://doi.org/10.3389/fnins.2016.00349
Müller, 2008, Machine learning for real-time single-trial EEG-analysis: From brain-computer interfacing to mental state monitoring, J. Neurosci. Methods, 167, 82, 10.1016/j.jneumeth.2007.09.022
Müller, 2015, Stuck and frustrated or in flow and happy: Sensing developers’ emotions and progress
Nguyen, A., Alqurashi, R., Raghebi, Z., Banaei-Kashani, F., Halbower, A.C., Vu, T., 2018. LIBS: A bioelectrical sensing system from human ears for staging whole-night sleep study. Commun. ACM. https://doi.org/10.1145/3266287
Nicolas-Alonso, 2012, Brain computer interfaces, a review, Sensors, 12, 1211, 10.3390/s120201211
Nie, D., Wang, X.W., Shi, L.C., Lu, B.L., 2011. EEG-based emotion recognition during watching movies, in: 2011 5th International IEEE/EMBS Conference on Neural Engineering, NER 2011. https://doi.org/10.1109/NER.2011.5910636
Norton, J.J.S., Lee, D.S., Lee, J.W., Lee, W., Kwon, O., Won, P., Jung, S.Y., Cheng, H., Jeong, J.W., Akce, A., Umunna, S., Na, I., Kwon, Y.H., Wang, X.Q., Liu, Z.J., Paik, U., Huang, Y., Bretl, T., Yeo, W.H., Rogers, J.A., Bao, Z., 2015. Soft, curved electrode systems capable of integration on the auricle as a persistent brain-computer interface. Proc. Natl. Acad. Sci. U. S. A. https://doi.org/10.1073/pnas.1424875112
Notaro, 2018, Development and demonstration of an integrated EEG, eye-tracking, and behavioral data acquisition system to assess online learning, ACM Int. Conf. Proc. Ser., 10
Olivetti, E., Kia, S.M., Avesani, P., 2014. MEG decoding across subjects, in: Proceedings - 2014 International Workshop on Pattern Recognition in Neuroimaging, PRNI 2014. https://doi.org/10.1109/PRNI.2014.6858538
OpenBCI - Open Source Biosensing Tools (EEG, EMG, EKG, and more) [WWW Document], n.d. URL https://openbci.com/ (accessed 4.7.20).
Pan, 2020, EEG-based emotion recognition using logistic regression with Gaussian kernel and Laplacian prior and investigation of critical frequency bands, Appl. Sci., 10, 1619, 10.3390/app10051619
Peng, Y., Zhu, J.Y., Zheng, W.L., Lu, B.L., 2014. EEG-based emotion recognition with manifold regularized extreme learning machine, in: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBC 2014. https://doi.org/10.1109/EMBC.2014.6943755
Petrantonakis, P.C., Hadjileontiadis, L.J., 2010. Emotion recognition from EEG using higher order crossings. IEEE Trans. Inf. Technol. Biomed. https://doi.org/10.1109/TITB.2009.2034649
Picard, 2000, Toward computers that recognize and respond to user emotion, IBM Syst. J., 39, 705, 10.1147/sj.393.0705
Pradhan, N., Narayana Dutt, D., 1993. Use of running fractal dimension for the analysis of changing patterns in electroencephalograms. Comput. Biol. Med. https://doi.org/10.1016/0010-4825(93)90135-N
Rahma, 2018, Measurement of concentration duration on reading activity: EEG Analysis with OpenBCI Ganglion Board, SSRN Electron. J.
Rai, 2015, Novel feature for identification of focal EEG signals with k-Means and fuzzy c-means algorithms
Rashid, 2018, An EEG experimental study evaluating the performance of Texas instruments ADS1299, Sensors (Switzerland), 18, 3721, 10.3390/s18113721
Ratti, E., Waninger, S., Berka, C., Ruffini, G., Verma, A., 2017. Comparison of medical and consumer wireless EEG systems for use in clinical trials. Front. Hum. Neurosci. https://doi.org/10.3389/fnhum.2017.00398
Rayatdoost, S., Soleymani, M., 2018. Cross-corpus EEG-based emotion recognition, in: IEEE International Workshop on Machine Learning for Signal Processing, MLSP. https://doi.org/10.1109/MLSP.2018.8517037
Roach, 2008, Event-related EEG time-frequency analysis: An overview of measures and an analysis of early gamma band phase locking in schizophrenia, Schizophr. Bull., 34, 907, 10.1093/schbul/sbn093
Roesler, O., Bader, L., Forster, J., Hayashi, Y., Heßler, S., Suendermann-oeft, D., 2014. Comparison of EEG devices for eye state classification. Proc. AIHLS 2014, Int. Conf. Appl. informatics Heal. Life Sci. AIHLS 2014.
Russell, 1980, A circumplex model of affect, J. Pers. Soc. Psychol., 39, 1161, 10.1037/h0077714
Saifutdinova, E., Macaš, M., Gerla, V., Lhotská, L., 2016. Adaptive segmentation optimization for sleep spindle detector, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-43949-5_6
Scherer, K.R., 2005. What are emotions? And how can they be measured? Soc. Sci. Inf. https://doi.org/10.1177/0539018405058216
Sheehy, N., 1984. Electroencephalography: basic principles, clinical applications and related fields. J. Neurol. Neurosurg. Psychiatry. https://doi.org/10.1136/jnnp.47.6.654-a
Shen, J., Li, B., Shi, X., 2017. Real-time detection of human drowsiness via a portable brain-computer interface. Open J. Appl. Sci. https://doi.org/10.4236/ojapps.2017.73009
Silva, 2017, EEG and Eye movement maps of chess players
Soleymani, M., Lichtenauer, J., Pun, T., Pantic, M., 2012. A multimodal database for affect recognition and implicit tagging. IEEE Trans. Affect. Comput. https://doi.org/10.1109/T-AFFC.2011.25
Sorinasa, J., Fernandez-Troyano, J.C., Val-Calvo, M., Ferrández, J.M., Fernandez, E., 2019. A new model for the implementation of positive and negative emotion recognition 1–14.
Sourina, 2011, A fractal-based algorithm of emotion recognition from EEG using arousal-valence model
Stylianos, 2019, Neurocognitive assessment software for enrichment sensory environments, J. Proteomics Bioinform., 12, 10.4172/0974-276X.1000492
Subha, 2010, EEG signal analysis: a survey, J. Med. Syst., 34, 195, 10.1007/s10916-008-9231-z
Tan, P.-N., Steinbach, M., Kumar, V., 2006. Classification : Basic Concepts , Decision Trees , and. Introd. to Data Min. https://doi.org/10.1016/0022-4405(81)90007-8
Thammasan, N., Moriyama, K., Fukui, K.I., Numao, M., 2015. Investigation of familiarity effects in music-emotion recognition based on EEG, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-23344-4_24
Trull, T.J., Lane, S.P., Koval, P., Ebner-Priemer, U.W., 2015. Affective dynamics in psychopathology. Emot. Rev. https://doi.org/10.1177/1754073915590617
Valdes, 1992, Frequency domain models of the EEG, Brain Topogr, 4, 309, 10.1007/BF01135568
Vasiljevic, G.A.M., de Miranda, L.C., 2019. The influence of graphical elements on user’s attention and control on a neurofeedback-based game. Entertain. Comput. https://doi.org/10.1016/j.entcom.2018.10.003
Wallstrom, G.L., Kass, R.E., Miller, A., Cohn, J.F., Fox, N.A., 2004. Automatic correction of ocular artifacts in the EEG: A comparison of regression-based and component-based methods. Int. J. Psychophysiol. https://doi.org/10.1016/j.ijpsycho.2004.03.007
Wang, 2014, Emotional state classification from EEG data using machine learning approach, Neurocomputing, 129, 94, 10.1016/j.neucom.2013.06.046
Wang, X.W., Nie, D., Lu, B.L., 2011. EEG-based emotion recognition using frequency domain features and support vector machines, in: Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-642-24955-6_87
Wang, 2019, Emotion recognition based on framework of BADEBA-SVM, Math. Probl. Eng., 2019, 1, 10.1155/2019/9109250
Wei, C.C., Ma, M.Y., 2017. Influences of Visual Attention and Reading Time on Children and Adults. Read. Writ. Q. https://doi.org/10.1080/10573569.2015.1092100
Weka 3 - Data Mining with Open Source Machine Learning Software in Java [WWW Document], n.d. URL https://www.cs.waikato.ac.nz/ml/weka/ (accessed 5.20.20).
Yang, 2018, Emotion recognition from multi-channel EEG through parallel convolutional recurrent neural network
Yu Chen, 2019, A critical review on state-of-the-art EEG-based emotion datasets, ACM Int. Conf. Proc. Ser., 10
Zeng, 2019, EEG emotion classification using an improved sincnet-based deep learning model, Brain Sci, 9, 326, 10.3390/brainsci9110326
Zhang, 2016, ReliefF-based EEG sensor selection methods for emotion recognition, Sensors (Switzerland), 16, 1558, 10.3390/s16101558
Zheng, W.-L., Zhu, J.-Y., Lu, B.-L., 2017. Identifying Stable Patterns over Time for Emotion Recognition from EEG. IEEE Trans. Affect. Comput. https://doi.org/10.1109/taffc.2017.2712143
Zheng, 2017, A multimodal approach to estimating vigilance using EEG and forehead EOG, J. Neural Eng., 14, 026017, 10.1088/1741-2552/aa5a98
Zheng, 2014, EEG-based emotion classification using deep belief networks
Zheng, 2016, Unobtrusive and multimodal wearable sensing to quantify anxiety, IEEE Sens. J., 16, 3689, 10.1109/JSEN.2016.2539383
Zhou, F., Qu, X., Jiao, J., Helander, M.G., 2014. Emotion prediction from physiological signals: A comparison study between visual and auditory elicitors. Interact. Comput. https://doi.org/10.1093/iwc/iwt039
Zhuang, 2018, Investigating patterns for self-induced emotion recognition from EEG signals, Sensors (Switzerland), 18, 841, 10.3390/s18030841