EEG Signal Analysis: A Survey
Tóm tắt
Từ khóa
Tài liệu tham khảo
Acharya, U. R., Faust, O., Kannathal, N., Chua, T. J., and Laxminarayan, S., Dynamical analysis of EEG signals at various sleep stages. Comput. Methods Programs Biomed. 80(1):37–45, 2005 doi: 10.1016/j.cmpb.2005.06.011 .
Acharya, U. R., Joseph, P. K., Kannathal, N., Min, L. C., and Suri, J. S., Heart rate Variability: a review. Med. Biol. Eng. Comput. 44(12):1031–1051, 2006 doi: 10.1007/s11517-006-0119-0 .
Akaike, H., Fitting autoregressive models for prediction. Ann. Inst. Stat. Math. 21:243–247, 1969 doi: 10.1007/BF02532251 .
Akaike, H., A new look at statistical model identification. IEEE Trans. Automat. Contr. 19:716–723, 1974 doi: 10.1109/TAC.1974.1100705 .
Bai, D., and Li Qiu, T., The sample entropy and its application in EEG based epilepsy detection. J. Biomed. Eng. 24(1):200–205, 2007.
Bhattacharya, J., and Petsche, H., Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise.. Signal processing. 85(11):2161–2177, 2005 doi: 10.1016/j.sigpro.2005.07.007 .
Bruhn, J., and Ropcke, H., Approximate entropy as an electroencephalographic measure of anesthetic drug effect during desflurane anesthesia.. Anesthesilogy. 92(3):715–726, 2000 doi: 10.1097/00000542-200003000-00016 .
Bullock, T. H., Achimowicz, J. Z., Duckrow, R. B., Spencer, S. S., and Iragui-Madoz, V. J., Bicoherence of intracranial EEG in sleep, wakefulness and seizures. Electroencephalogr. Clin. Neurophysiol. 103:661–678, 1997 doi: 10.1016/S0013-4694(97)00087-4 .
Carthy, RAMc., and Warrington, E. K., Cognitive Neuropsychology: A clinical Introduction. Academic Press:San Diego, LA, 1990.
Chandran, V., and Elgar, S., Pattern recognition using invariants defined from higher order spectra- one dimensional inputs. IEEE Trans. Signal Process. 41(1):205–212, 1993 doi: 10.1109/TSP.1993.193139 .
Charles, W. A., James, N. K., O’Connor, T., Michael, J. K., and Artem, S., Geometric subspace methods and time-delay embedding for EEG artifact removal and classification. IEEE Trans. Neural Syst. Rehabil. Eng. 14(2):142–146, 2006 doi: 10.1109/TNSRE.2006.875527 .
Chua, K. C., Chandran, V., Acharya, U. R., and Lim, C. M., Analysis of epileptic EEG signals using higher order spectra. J. Med. Eng. Technol. (2007) (in press).
Claesen, S., and Kitney, R. I., Estimation of the Largest Lyapunov Exponent of an RR Interval and its use as an Indicator of Decreased Autonomic Heart Rate Control. Comput. Cardiol. ▪▪▪, 133–136, (1994).
Dangel, S., Meier, P.F., Moser, H.R., Plibersek, S., and Shen, Y., Time series analysis of sleep EEG. Computer assisted. Physics ▪▪▪, 93–95, 1999.
Das, A., Das, P., and Roy, A.B., Applicability of Lyapunov Exponent in EEG data analysis. Complexity International. 2002.
Dias-Tosta, E., Kuckeihaus, G. S., Amaral, K., Sinha, J., Kurup, A., Paleti, A., et al., Decrease of non-linear structure in the EEG of Alzheimer patients compared to healthy controls. Clin. Neurophysiol. 110(7):1159–1167, 1999 doi: 10.1016/S1388-2457(99)00013-9 .
Ding, M., Grebogi, E., Ott, E., Sauer, T., and Yorke, J. A., Estimating correlation dimension from a chaotic time series:when a plateau occurs? Physica. D. 69:404–424, 1993 doi: 10.1016/0167-2789(93)90103-8 .
Durka, P. J., Klekowicz, H., Blinowska, K. J., Szelenberger, W., and Niemcewicz, S. Z., Simple system for detection of EEG artifacts in polysomnographic recordings. IEEE Trans. Biomed. Eng. 50(4):526–528, 2003 doi: 10.1109/TBME.2003.809476 .
Eckmann, J. P., Kamphorst, S. O., and Ruelle, D., Recurrence Plots of Dynamical Systems. Europhys. Lett. 4:973–977, 1987 doi: 10.1209/0295-5075/4/9/004 .
Faust, O., Acharya, U. R., Alen, A., and Lim, C. M., Analysis of EEG signals during epileptic and alcoholic states using AR modeling techniques. Innovations and Technology in Biology and Medicine (ITBM-RBM). 29(1):44–52, 2008.
Fell, J., and Roschke, J., A Comparison between spectral and nonlinear EEG measures. Electroencephalogr. Clin. Neurophysiol. 98(5):401–410, 1996 doi: 10.1016/0013-4694(96)95636-9 .
Fraser, A. M., Information and entropy in strange attractors. IEEE Trans. Inf. Theory. 35:245–262, 1989 doi: 10.1109/18.32121 .
Fraser, A. M., and Swinney, H. L., Independent coordinates for strange attractors from mutual information. Phys. Rev. A 33:1134–1140, 1986 doi: 10.1103/PhysRevA.33.1134 .
Gigola, S., Ortiz, F., D’Attellis, C. E., Silva, W., and Kochen, S., Prediction of epileptic seizures using accumulated energy in a multiresolution framework. J. Neurosci. Methods. 138(1–2):107–111, 2004 doi: 10.1016/j.jneumeth.2004.03.016 .
Grassberger, P., and Procassia, I., Measuring the strangeness of strange attractors. Physica D 9:189–208, 1983 doi: 10.1016/0167-2789(83)90298-1 .
Grassberger, P., and Procaccia, I., Characterization of strange attractors. Phys. Rev. Lett. 50(5):346–349, 1983 doi: 10.1103/PhysRevLett.50.346 .
Grassberger, P., and Schrieber, T., Nonlinear time sequence analysis. Int. J. Bifurcat. Chaos. 1(3):512–547, 1991 doi: 10.1142/S0218127491000403 .
Haselsteiner, E., and Pfurtscheller, G., Using time-dependent neural networks for EEG classification. IEEE Trans. Rehabil. Eng. 8:457–463, 2000 doi: 10.1109/86.895948 .
Hebert, R., Lehmann, D., Tan, G., Travis, F., and Arenander, A., Enhanced EEG alpha time-domain phase synchrony during Transcendental Meditation: Implications for cortical integration theory. J. Signal Process. 85(11):2213–2232, 2005 doi: 10.1016/j.sigpro.2005.07.009 .
Higuchi, T., Approach to an irregular time series on the basis of the fractal theory. Physica. D 31:277–283, 1988 doi: 10.1016/0167-2789(88)90081-4 .
Hubert, P., Lutzenberger, W., Pulvermüller, F., and Birbaumer, N., Fractal dimensions of short EEG time series in humans. Neurosci. Lett. 225(2):77–80, 1997 doi: 10.1016/S0304-3940(97)00192-4 .
Hudson, D. L., Cohen, M. E., Kramer, M., Szeri, A., and Chang, F. L., Diagnostic Implications of EEG Analysis in Patients with Dementia. Proceedings of 2nd International IEEE EMBS Conference on Neural Engineering. 629–632, 2005
Inoye, K., Quantification of EEG irregularity by use of the entropy of the power spectrum. Electroencephalogr. Clin. Neurophysiol. 79:204–210, 1991 doi: 10.1016/0013-4694(91)90138-T .
Jahankhani, P., Kodogiannis, V., and Revett, K., EEG Signal Classification Using Wavelet Feature Extraction and Neural Networks. IEEE International Symposium on Modern Computing John Vincent Atanasoff. 120–124, 2006
Jiayi, G., Peng, Z., Xin, Z., and Mingshi, W., Sample Entropy Analysis of Sleep EEG under Different Stages. IEEE/ICME Int. Conference on Complex Medical Engineering. 1499–1502, 2007
Joseph, P., Kannathal, N., and Acharya, U. R., Complex Encephalogram Dynamics during Meditation. Journal of Chinese clinical medicine. 2(4):220–230, 2007.
Kang-ming, C., and Pei-chen, L., Meditation EEG interpretation based on novel fuzzy-merging strategies and wavelet features. Biomedical Engineering Applications. Basis Commun. 17(4):167–175, 2005.
Kannathal, N., Acharya, U. R., Fadilah, A., Tibelong, T., and Sadasivan, P. K., Nonlinear analysis of EEG signals at different mental states. Biomed. Online J. 3:7, 2004 doi: 10.1186/1475-925X-3-7 .
Kannathal, N., Acharya, U. R., Joseph, P., and Ng, E. Y. K. Analysis of EEG signals with and without reflexology using FFT and auto regressive modeling techniques. J. Chin. Clin. Med. 1(1):12–20, 2006.
Kannathal, N., Choo, M., Acharya, U. R., and Sadasivan, P., Entropies for detection of epilepsy in EEG. Comput. Methods Programs Biomed. 80(3):187–194, 2005 doi: 10.1016/j.cmpb.2005.06.012 .
Kantz, H., and Schreiber, T., Nonlinear lime series analysis. Cambridge University Press:New York. 1997
Katz, M., Fractals and the analysis of waveforms. Comput. Biol. Med. 18(3):145–156, 1988 doi: 10.1016/0010-4825(88)90041-8 .
Kemal, M. K., Guler, I., Alper, D., and Mehmet, A., Comparison of STFT and Wavelet Transform methods in determining epileptic seizure activity in EEG signals for real time application. Comput. Biol. Med. 35:603–616, 2005 doi: 10.1016/j.compbiomed.2004.05.001 .
Kennel, M. B., Brown, R., and Abarbanel, H. D. I., etermining embedding dimension for phase-space reconstruction using a geometrical construction. Phys. Rev. A 45:3403, 1992 doi: 10.1103/PhysRevA.45.3403 .
Kiymik, M. K., Akin, M., and Subasi, A., Automatic recognition of alertness level by using wavelet transform and artificial neural network. J. Neurosci. Methods. 139(2):231–240, 2004 doi: 10.1016/j.jneumeth.2004.04.027 .
Kobayashi, T., Misaki, K., Nakagawa, H., Madokoro, S., Ihara, H., Tsuda, K., et al., Non-linear analysis of the sleep EEG. Psychiatry Clin. Neurosci. 53(2):159–161, 1999 doi: 10.1046/j.1440-1819.1999.00540.x .
Ktonas, P.Y., Golemati, S., Tsekou, H., Paparrigopoulos, T., Soldatos, C.,R., Xanthopoulos, P., et al., Potential dementia biomarkers based on the time-varying microstructure of sleep EEG spindles. 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. 2464–2467, 2007.
Lee, J., Kim, D., Kim, I., Suk Park, K., and Kim, S., onlinear-analysis of human sleep EEG using detrended fluctuation analysis. Med. Eng. Phys. 26(9):773–776, 2004 doi: 10.1016/j.medengphy.2004.07.002 .
Li, X., Sleigh, J. W., Voss, L. J., and Ouyang, G., Measure of the electroencephalographic effects of sevoflurane using recurrence dynamics. Neurosci. Lett. 424(1):47–50, 2007 doi: 10.1016/j.neulet.2007.07.041 .
Lin, R., Ren-Guey, L., Chwan-Lu, T., Heng-Kuan, Z., Chih-Feng, C., and Joe-Air, J. A., New Approach For Identifying Sleep Apnea Syndrome Using Wavelet Transform and Neural Networks. Biomedical Engineering Applications-Basis & Communications. 18(3):138–144, 2006.
Liu, J. Z., Yang, Q., Yao, B., Brown, R. W., and Yue, G. H., Linear correlation between fractal dimension of EEG signal and handgrip force. Biol. Cybern. 93(2):131–140, 2005 doi: 10.1007/s00422-005-0561-3 .
Lu, H., Wang, M., and Yu, H., EEG Model and Location in Brain when Enjoying MusicProceedings of the 27th Annual IEEE Engineering in Medicine and Biology Conference Shanghai:China. 2695–2698, 2005.
Mahgoub, Y. A., and Dansereau, R. M.,Voicing-state classification of co-channel speech using nonlinear state-space reconstruction. Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. 409–412, 2005.
Mandelbrot, B. B., Geometry of nature. Freeman:Sanfrancisco, 1983
Marple, S. L., Digital Spectral Analysis. Englewood Cliffs NJ, Prentice-Hall, 1987, Chapter 7.
Martin, B., Milos, M., Ake, E., Katerina, C., and Vladimir, K., Objective assessment of the degree of dementia by means of EEG. Neuropsychobiology. 48:19–26, 2003 doi: 10.1159/000071824 .
Nikias, C. L., and Raghuveer, M. R., Bispectrum Estimation:A Digital Signal Processing Framework. Proc. IEEE. 75(7):869–891, 1987 doi: 10.1109/PROC.1987.13824 .
Nunes, R. R., de Almeida, M. P., and Sleigh, J. W., Spectral entropy: a new method for anesthetic adequacy. Rev. Bras. Anestesiol. 54(3):403–422, 2004.
Oppenheim, A. V., and Lim, J. S., The importance of phase in signals. Proc. IEEE. 69:529–550, 1981 doi: 10.1109/PROC.1981.12022 .
Packard, N. H., Crutchfield, J. P., Farmer, J. D., and Shaw, R. S., Geometry from a time series. Phys. Rev. Lett. 45:712–716, 1980 doi: 10.1103/PhysRevLett.45.712 .
Patil, S. T., and Bormane, D. S., Electroencephalograph Signal Analysis During Bramari. 9th Int. Conference on Inf.Technology (ICIT 06). 26–32, 2006.
Pincus, S. M., Approximate entropy as a measure of system complexity. Proc. Natl. Acad. Sci. USA. 88:2297–2301, 1991 doi: 10.1073/pnas.88.6.2297 .
Pincus, S. M., and Goldberger, A. L., Physiological time-series analysis: what does regularity quantify? Am. J. Physiol. 266:H1643–H1656, 1994.
Pincus, S. M., and Keefe, D. L., Quantification of hormone pulsatility via an approximate entropy algorithm. Am. J. Physiol. 262:E741–E754, 1992.
Pradhan, N., and Dutt, D. N., Data compression by linear prediction for storage and transmission of EEG signals. Int. J. Biomed. Comput. 35(3):207–217, 1994 doi: 10.1016/0020-7101(94)90076-0 .
Proakis, J., and Manolakis, D.,Digital Signal Processing. Prentice-Hall. 1996, Chapter 12.
Rao, R. M., and Bopardikar, A.S.,Wavelet Transforms introduction to theory and applications. Addison Wesley, Longman Inc, Reading, MA, 1998.
Renna, M., Handy, J., and Shah, A., Low Baseline Bispectral Index of the Electroencephalogram in Patients with Dementia. Anesth. Analg. 96:1380–1385, 2003 doi: 10.1213/01.ANE.0000059223.78879.0F .
Renyi, A., On measures of entropy and information. Proc. Fourth. Berkeley Symp. Math. Stat. Prob. 1:547–561, 1961.
Richmann, J. S., and Moorman, J. R., hysiological time series analysis using approximate entropy and sample entropy. Am. J. Physiol. Heart Circ. Physiol. 278:2039–2049, 2000.
Robert, L., Ren-Gue, L., Chwan-Lu, T., heng-Kuan, Z., Chih-Feng, C., and Joe-Air, J., A new approach for identifying sleep apnea syndrome using wavelet transform and neural networks. Biomedical engineering-Applications. Basis Commun. 18:138–143, 2006.
Roháľová, M., Sykacek, P., Koskaand, M., and Dorffner, G., Detection of the EEG Artifacts by the Means of the (Extended) Kalman Filter. Meas. Sci. Rev. 1(1):59–62, 2001.
Sandha, G. S., Singh, P. K., Oberoi, N. D., and Nagchoudhuri, D., Phase Correlations in Human EEG Signal: A Case Study. Second IEEE International Workshop on Electronic Design, Test and Applications. 41 – 43, 2004.
Sauer, T., Yorke, J. A., and Casdagli, M., Embedology. J. Stat. Phys. 65:579–616, 1991 doi: 10.1007/BF01053745 .
Sheikhani, A., Behnam, H., Mohammadi, M. R., and Noorozian, M., Analysis of EEG background activity in Autism disease patients with bispectrum and STFT measure. Proceedings of the 11th Conference on 11th WSEAS International Conference on Communications. 11:318–322, 2007.
In-Ho, S., Doo-Soo, L., and Sun I, K., Recurrence quantification analysis of sleep electroencephalogram in sleep apnea syndrome in humans. Neurosci. Lett. 366(2):148–153 doi: 10.1016/j.neulet.2004.05.025 .
Srinivasan, N., Wong, M. T., & Krishnan, S. M. (2003). A new Phase Space Analysis Algorithm for Cardiac Arrhythmia Detection pp. 82–85. Mexico: Proceedings of the 25th Annual International Conference of the IEEE EMBS Cancun.
Stam, C. J., Pijn, J. P., Suffczynski, P., and da silva, F. H. L., Dynamics of the human alpha rhythm:evidence for online. Clin. Neurophysiol. 110:1801–1813, 1999 doi: 10.1016/S1388-2457(99)00099-1 .
Stanski, D. R., Using Pharmacodynamic Modelling of the Electroencephalogram (EEG) to understand anesthetic drug clinical pharmacology. Drug Metab. Pharmacokinet. 5(4):504–508, 1990.
Steyn-Ross, M. L., Steyn Ross, D. A., Sleigh, J. W., and Liley, D. T., Theoretical Electroencephalogram stationary spectrum for a white noise driven cortex:evidence for a general anesthetic-induced phase transition. Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics. 60(6):7299–7311, 1999 doi: 10.1103/PhysRevE.60.7299 .
Stoica, .P, and Moses, R. L., Introduction to Spectral Analysis. Prentice-Hall, 1997.
Subasi, A., EEG signal classification using wavelet feature extraction and a mixture of expert model. Expert Syst. Appl. An Int. J. 32(4):1084–1093, 2007 doi: 10.1016/j.eswa.2006.02.005 .
Swiderski, B., Osowski, S., and Rysz, A., Lyapunov Exponent of EEG Signal for Epileptic Seizure Characterization. Proceedings of the 2005 European Conference on Circuit Theory and Design. 2(28):153–156, 2005.
Takens, F., Detecting Strange Attractors in Turbulence. In D. Rand, L. S. Young (Eds.), Dynamical Systems and Turbulence. Springer: Berlin, 1981.
Theiler, J., Eubank, S., Longtin, A., Galdrikian, B., and Farmer, J. D., Testing for nonlinearity in time series: the method of surrogate data. Physica D. 58:77–94, 1992 doi: 10.1016/0167-2789(92)90102-S .
Tzyy-Ping, J., Makeig, S., Mckeown, M. J., Bell, A. J., Te-Won, L., and Sejnowski, T. J., Imaging Brain Dynamics Using Independent Component Analysis. Proc. IEEE. 89(7):1107–1122, 2001 doi: 10.1109/5.939827 .
Venkatramanan, S., and Kalpakam, N. V., Aiding the detection of Alzheimer’s disease in clinical electroencephalogram recording by selective de-noising of ocular artifacts. International Conference on Communications, circuits and systems. 2:965–968, 2004.
Vetterli, M., Wavelet anf filter banks:theory and design. IEEE Trans. Signal Process. 40(9):2207–2232, 1992 doi: 10.1109/78.157221 .
Wei-Chih, L., Hung-Wen, C., and Chien-Yeh, H., Discovering EEG Signals Response to Musical Signal Stimuli by Time-frequency analysis and Independent Component Analysis. Proceedings of the 27th Annual IEEE Engineering in Medicine and Biology Conference Shanghai:China. 2765–2768, 2005
Welch, P. D., The use of Fast Fourier Transform for the Estimation of Power Spectra: A Method based on time averaging over short, modified periodograms. IEEE Trans Audio Electroacoust. AU-15:70–73, 1967 doi: 10.1109/TAU.1967.1161901 .