EDTA-3Na optimized electrolyte enables reversible zinc storage in VO2//Zn full cells

Ionics - Tập 29 - Trang 2783-2791 - 2023
Wengang Xu1,2, Qizhen Xie1,2, Xiaobo Chen1,2, Mingjun Wu1,2, Jun Zhang3, Qiang Ru1,2,4
1Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, Guangdong Engineering Technology Research Center of Efficient Green, Energy and Environment Protection Materials, Guangdong Provincial Key Laboratory of Nuclear Science, Institute of Quantum Matter, School of Physics and Telecommunication Engineering, South China Normal University, Guangzhou, China
2Frontier Research Institute for Physics, Guangdong-Hong Kong Joint Laboratory of Quantum Matter, South China Normal University, Guangzhou, China
3School of Physics Science and Technology, Lingnan Normal University, Zhanjiang, China
4School of Materials and New Energy, South China Normal University, Shanwei, China

Tóm tắt

Aqueous zinc-ion batteries (AZIBs) are considered to be one of the potential alternatives for lithium-ion batteries. Vanadium-based oxides as cathode materials have aroused increasing attention because of their advantages, such as low cost and high specific capacity. But its rapid capacity decay prompted researchers to explore various modified techniques. Herein, an electrolyte modification strategy by introducing acid trisodium salt (EDTA-3Na) additive to 2 M ZnSO4 solution is developed to stimulate high reversible zinc storage. The desolvation effect of EDTA-3Na in the electrolyte optimizes the zinc deposition behavior and inhibits the formation of zinc dendrites, which could reduce the resistance of the VO2//Zn full cells and accelerate the reaction kinetics of the cathode. The VO2//Zn full cells can present a high zinc storage capability of 281.5 mAh g−1 at a high current density of 5 A g−1 after 1000 cycles and deliver prominent rate performance of 403.6, 373.5, 343.1, and 297.6 mAh g−1 at 1, 2, 4, and 8 A g−1 respectively.

Tài liệu tham khảo

Mai L, Yan M, Zhao Y (2017) Track batteries degrading in real time. Nature 546:469–470 Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334:928–935 Liu K, Liu Y, Lin D, Pei A, Cui Y (2018) Materials for lithium-ion battery safety. Sci Adv 4(6):9820 Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414:359–367 Yi Z, Chen G, Hou F, Wang L, Liang J (2021) Strategies for the stabilization of Zn metal anodes for Zn-ion batteries. Adv Energy Mater 11(1):2003065 Song M, Tan H, Chao D, Fan H (2018) Recent advances in Zn-ion batteries. Adv Func Mater 28(41):1802564 Zhang X, Li J, Liu D, Liu M, Zhou T, Qi K, Shi L, Zhu Y, Qian Y (2021) Ultra-long-life and highly reversible Zn metal anodes enabled by a desolvation and deanionization interface layer. Energy Environ Sci 14(5):3120–3129 Zhang Y, Cui X, Liu Y, Cheng S, Cui P, Wu Y, Sun Z, Shao Z, Fu J, Xie E (2022) Aqueous Zn-MnO2 battery: approaching the energy storage limit with deep Zn2+ pre-intercalation and revealing the ions insertion/extraction mechanisms. J Energy Chem 67:225–232 Liu B, Wang S, Wang Z, Lei H, Chen Z, Mai W (2020) Novel 3D nanoporous Zn–Cu alloy as long-life anode toward high-voltage double electrolyte aqueous zinc-ion batteries. Small 16(22):2001323 Wang J, Cai Z, Xiao R, Ou Y, Zhan R, Yuan Z, Sun Y (2020) A chemically polished zinc metal electrode with a ridge-like structure for cycle-stable aqueous batteries. ACS Appl Mater Interfaces 12(20):23028–23034 Xiao R, Cai Z, Zhan R, Wang J, Ou Y, Yuan Z, Wang L, Lu Z, Sun Y (2021) Localizing concentrated electrolyte in pore geometry for highly reversible aqueous Zn metal batteries. Chem Eng J 420(1):129642 Cai Z, Ou Y, Wang J, Xiao R, Fu L, Yuan Z, Zhan R, Sun Y (2020) Chemically resistant Cu–Zn/Zn composite anode for long cycling aqueous batteries. Energy Storage Mater 27:205–211 Cai Z, Ou Y, Zhang B, Wang J, Fu L, Wan M, Li G, Wang W, Wang L, Jiang J, Seh ZW, Hu E, Yang XQ, Cui Y, Sun Y (2021) A replacement reaction enabled interdigitated metal/solid electrolyte architecture for battery cycling at 20 mA cm-2 and 20 mAh cm-2. J Am Chem Soc 143(8):3143–3152 Han J, Euchner H, Kuenzel M, Hosseinet SM, Groß A, Varzi A, Passerini S (2021) A thin and uniform fluoride-based artificial interphase for the zinc metal anode enabling reversible Zn/MnO2 batteries. ACS Energy Lett 6(9):3063–3071 Ma L, Li Q, Ying Y, Ma F, Chen S, Li Y, Huang H, Zhi C (2021) Toward practical high-areal-capacity aqueous zinc-metal batteries: quantifying hydrogen evolution and a solid-ion conductor for stable zinc anodes. Adv Mater 33(12):2007406 Miao Z, Du M, Li H, Zhang F, Jiang H, Sang Y, Li Q, Liu H, Wang S (2021) Constructing nano-channeled tin layer on metal zinc for high-performance zinc-ion batteries anode. EcoMat 3(4):e12125 Jin S, Zhang D, Sharma A, Zhao Q, Shao Y, Chen P, Zheng J, Yin J, Deng Y, Biswal P, Archer LA (2021) Stabilizing zinc electrodeposition in a battery anode by controlling crystal growth. Small 17(33):2101798 Luo M, Wang C, Lu H, Lu Y, Xu BB, Sun W, Pan H, Yan M, Jiang Y (2021) Dendrite-free zinc anode enabled by zinc-chelating chemistry. Energy Storage Mater 41:515–521 Sun P, Ma L, Zhou W, Qiu M, Wang Z, Chao D, Mai W (2021) Simultaneous regulation on solvation shell and electrode interface for dendrite-free Zn ion batteries achieved by a low-cost glucose additive. Angew Chem 60(33):18247–18255 Zhang T, Tang Y, Guo S, Cao X, Pan A, Fang G, Zhou J, Liang S (2020) Fundamentals and perspectives in developing zinc-ion battery electrolytes: a comprehensive review. Energy Environ Sci 13(12):4625–4665 Cao Z, Zhuang P, Zhang X, Ye M, Shen J, Ajayan PM (2020) Strategies for dendrite-free anode in aqueous rechargeable zinc ion batteries. Adv Energy Mater 10(30):2001599 Fan L, Xie H, Hu Y, Caixiang Z, Rao AM, Zhou J, Lu B (2023) A tailored electrolyte for safe and durable potassium ion batteries. Energy Environ Sci 16:305–315 Cao J, Zhang D, Chanajaree R, Yue Y, Zeng Z, Zhang X, Qin J (2021) Stabilizing zinc anode via a chelation and desolvation electrolyte additive. Adv Powder Mater 1(1):100007 Li M, Li Z, Wang X, Huang M, Wen B, Guo R, Mai L (2021) Comprehensive understanding of the roles of water molecules in aqueous Zn-ion batteries: from electrolytes to electrode materials. Energy Environ Sci 14:3796–3839 He P, Zhang G, Liao X, Yan M, Xu X, An Q, Liu J, Mai L (2018) Sodium ion stabilized vanadium oxide nanowire cathode for high-performance zinc-ion batteries. Adv Energy Mater 8(10):1702463 Meng R, Li H, Lu Z, Zhang C, Wang Z, Liu Y, Wang W, Ling G, Kang F, Yang QH (2022) Tuning Zn-ion solvation chemistry with chelating ligands toward stable aqueous Zn anodes. Adv Mater 34(37):2200677 Wang F, Borodin O, Gao T, Fan X, Sun W, Han F, Faraone A, Dura JA, Xu K, Wang C (2018) Highly reversible zinc metal anode for aqueous batteries. Nature Mater 17(6):543–549 Cao J, Zhang D, Yue Y, Chanajaree R, Wang S, Han J, Zhang X, Qin J, Huang Y (2022) Regulating solvation structure to stabilize zinc anode by fastening the free water molecules with an inorganic colloidal electrolyte. Nano Energy 93:106839 He D, Du J, Liu P, Liu X, Chen X, Li W, Zhang K, Ma F (2019) Influence of EDTA-2Na on the hydroxyapatite coating deposited by hydrothermal-electrochemical method on Ti6Al4V surface. Surf Coat Technol 365:242–247 Shen C, Xu H, Liu L, Hu H, Chen S, Su L, Wang L (2020) EDTA-2Na assisted dynamic hydrothermal synthesis of orthorhombic LiMnO2 for lithium ion battery. J Alloy Compd 830:154599 Ou Y, Cai Z, Wang J, Zhan R, Liu S, Lu Z, Sun Y (2022) Reversible aqueous Zn battery anode enabled by a stable complexation adsorbent interface. EcoMat 4(3):e12167 Zhang SJ, Hao J, Luo D, Zhang PF, Zhang B, Davey K, Lin Z, Qiao SZ (2021) Dual-function electrolyte additive for highly reversible Zn anode. Adv Energy Mater 11(37):2102010 Wu L, Fu H, Li S, Zhu J, Zhou J, Rao AM, Cha L, Guo K, Wen S, Lu B (2023) Phase-engineered cathode for super-stable potassium storage. Nat Commun 14(644):1–12 Liang P, Yi J, Liu X, Wu K, Wang Z, Cui J, Liu Y, Wang Y, Xia Y, Zhang J (2020) Highly reversible Zn anode enabled by controllable formation of nucleation sites for Zn-based batteries. Adv Func Mater 30(13):1908528 Liu Y, Pan Z, Tian D, Hu T, Jiang H, Yang J, Sun J, Zheng J, Meng C, Zhang Y (2020) Employing “one for two” strategy to design polyaniline-intercalated hydrated vanadium oxide with expanded interlayer spacing for high-performance aqueous zinc-ion batteries. Chem Eng J 399:125842