E2F1 renders prostate cancer cell resistant to ICAM-1 mediated antitumor immunity by NF-κB modulation
Tóm tắt
E2F1 is the gatekeeper of the cell cycle controlling an analogous balance between proliferation and cell death. E2F1 expression is elevated in advanced prostate cancer. However, it is still unclear that the roles and mechanisms of E2F1 on prostate cancers. Targeted knockdown by interferon RNA was applied on two prostate cancer and Hela cell lines to examine the inverse correlation expression of E2F1 and ICAM-1. ICAM-1 promoter reporter and ChIP assays were used for analysis of the molecular basis of transcriptional regulation of E2F1 on ICAM-1. Co-IP assays were employed for testing the protein interaction between E2F1 and NF-κB. Tumor xenograft mice model with E2F1 and ICAM-1-knockdown prostate cancer cells were used to investigate the effects of E2F1 and ICAM-1 on antitumor immunity. E2F1 knockdown by a specific short hairpin RNA increased gene transcription and protein expression of ICAM-1. By using wild type and a series of mutant ICAM-1 promoter luciferase constructs, the NF-κB binding sites were found to be important for E2F1 regulation of ICAM-1 promoter. Targeted knockdown of E2F1 did not affect expression and phosphorylation of NF-κB and IκBα, but facilitated NF-κB binding to the ICAM-1 promoter, subsequently induced ICAM-1 transcription and production in prostate carcinoma cells. Furthermore, knockdown of E2F1 inhibited tumor growth of prostate cancer in vivo through increasing the susceptibility of tumor cells to ICAM-1-mediated anti-tumor immunity including enhancement of monocyte adhesion, leucocytes infiltration, as well as cytotoxicity against tumor cells. E2F1 knockdown inhibited prostate tumor growth in vitro and in vivo through sensitizing tumor cells to ICAM-1 mediated anti-immunity by NF-κB modulation, highlighting the potential of E2F1 as a therapeutic target.
Tài liệu tham khảo
Croci DO, Salatino M: Tumor immune escape mechanisms that operate during metastasis. Curr Pharm Biotechnol. 2011, 12: 1923-1936. 10.2174/138920111798376987
Igney FH, Krammer PH: Immune escape of tumors: apoptosis resistance and tumor counterattack. J Leukoc Biol. 2002, 71: 907-920.
Zamai L, Rana R, Mazzotti G, Centurione L, Di Pietro R, Vitale M: Lymphocyte binding to K562 cells: effect of target cell irradiation and correlation with ICAM-1 and LFA-3 expression. Eur J Histochem. 1994, 38 (Suppl 1): 53-60.
Slavin-Chiorini DC, Catalfamo M, Kudo-Saito C, Hodge JW, Schlom J, Sabzevari H: Amplification of the lytic potential of effector/memory CD8+ cells by vector-based enhancement of ICAM-1 (CD54) in target cells; implications for the intratumoral vaccine therapy. Cancer Gene Ther. 2004, 11: 665-680. 10.1038/sj.cgt.7700741
Uzendoski K, Kantor JA, Abrams SI, Schlom J, Hodge JW: Construction and characterization of a recombinant vaccinia virus expressing murine intercellular adhesion molecule-1: induction and potentiation of antitumor responses. Hum Gene Ther. 1997, 8: 851-860. 10.1089/hum.1997.8.7-851
Koyama S: Immunosuppressive effect of shedding intercellular adhesion molecule 1 antigen on cell-mediated cytotoxicity against tumor cells. Jpn J Cancer Res. 1994, 85: 131-134. 10.1111/j.1349-7006.1994.tb02072.x
Rosette C, Roth RB, Oeth P, Braun A, Kammerer S, Ekblom J, Denissenko MF: Role of ICAM1 in invasion of human breast cancer cells. Carcinogenesis. 2005, 26: 943-950.
Simmons DL: The role of ICAM expression in immunity and disease. Cancer Surv. 1995, 24: 141-155.
Wolfram RM, Budinsky AC, Brodowicz T, Kubista M, Köstler WJ, Kichler-Lakomy C, Hellan M, Kahlhammer G, Wiltschke C, Zielinski CC: Defective antigen presentation resulting from impaired expression of costimulatory molecules in breast cancer. Int J Cancer. 2000, 88: 239-244. 10.1002/1097-0215(20001015)88:2<239::AID-IJC15>3.0.CO;2-Z
Johnson DG, Schwarz JK, Cress WD, Nevins JR: Expression of transcription factor E2F1 induces quiescent cells to enter S phase. Nature. 1993, 365: 349-352. 10.1038/365349a0
Davis JN, Wojno KJ, Daignault S, Hofer MD, Kuefer R, Rubin MA, Day ML: Elevated E2F1 inhibits transcription of the androgen receptor in metastatic hormone-resistant prostate cancer. Cancer Res. 2006, 66: 11897-11906. 10.1158/0008-5472.CAN-06-2497
Zheng C, Ren Z, Wang H, Zhang W, Kalvakolanu DV, Tian Z, Xiao W: E2F1 induces tumor cell survival via nuclear factor-kappaB-dependent induction of EGR1 transcription in prostate cancer cells. Cancer Res. 2009, 69: 2324-2331. 10.1158/0008-5472.CAN-08-4113
Singh D, Febbo PG, Ross K, Jackson DG, Manola J, Ladd C, Tamayo P, Renshaw AA, D’Amico AV, Richie JP, Lander ES, Loda M, Kantoff PW, Golub TR, Sellers WR: Gene expression correlates of clinical prostate cancer behavior. Cancer Cell. 2002, 1: 203-209. 10.1016/S1535-6108(02)00030-2
Hou J, Baichwal V, Cao Z: Regulatory elements and transcription factors controlling basal and cytokine-induced expression of the gene encoding intercellular adhesion molecule 1. Proc Natl Acad Sci U S A. 1994, 91: 11641-11645. 10.1073/pnas.91.24.11641
Ledebur HC, Parks TP: Transcriptional regulation of the intercellular adhesion molecule-1 gene by inflammatory cytokines in human endothelial cells. Essential roles of a variant NF-kappa B site and p65 homodimers. J Biol Chem. 1995, 270: 933-943. 10.1074/jbc.270.2.933
Roebuck KA, Finnegan A: Regulation of intercellular adhesion molecule-1 (CD54) gene expression. J Leukoc Biol. 1999, 66: 876-888.
Jacobs MD, Harrison SC: Structure of an IkappaBalpha/NF-kappaB complex. Cell. 1998, 95: 749-758. 10.1016/S0092-8674(00)81698-0
Takahashi Y, Rayman JB, Dynlacht BD: Analysis of promoter binding by the E2F and pRB families in vivo: distinct E2F proteins mediate activation and repression. Genes Dev. 2000, 14: 804-816.
Van Seventer GA, Shimizu Y, Horgan KJ, Shaw S: The LFA-1 ligand ICAM-1 provides an important costimulatory signal for T cell receptor-mediated activation of resting T cells. J Immunol. 1990, 144: 4579-4586.
Chong AS, Boussy IA, Jiang XL, Lamas M, Graf LH: CD54/ICAM-1 is a costimulator of NK cell-mediated cytotoxicity. Cell Immunol. 1994, 157: 92-105. 10.1006/cimm.1994.1208
Kornacker M, Moldenhauer G, Herbst M, Weilguni E, Tita-Nwa F, Harter C, Hensel M, Ho AD: Cytokine-induced killer cells against autologous CLL: Direct cytotoxic effects and induction of immune accessory molecules by interferon-gamma. Int J Cancer. 2006, 119: 1377-1382. 10.1002/ijc.21994
Schmidt-Wolf IG, Lefterova P, Mehta BA, Fernandez LP, Huhn D, Blume KG, Weissman IL, Negrin RS: Phenotypic characterization and identification of effector cells involved in tumor cell recognition of cytokine-induced killer cells. Exp Hematol. 1993, 21: 1673-1679.
Pievani A, Borleri G, Pende D, Moretta L, Rambaldi A, Golay J, Introna M: Dual-functional capability of CD3 + CD56+ CIK cells, a T-cell subset that acquires NK function and retains TCR-mediated specific cytotoxicity. Blood. 2011, 118: 3301-3310.
Lim CA, Yao F, Wong JJ, George J, Xu H, Chiu KP, Sung WK, Lipovich L, Vega VB, Chen J, Shahab A, Zhao XD, Hibberd M, Wei CL, Lim B, Ng HH, Ruan Y, Chin KC: Genome-wide mapping of RELA(p65) binding identifies E2F1 as a transcriptional activator recruited by NF-kappaB upon TLR4 activation. Mol Cell. 2007, 27: 622-635.
Tachimori A, Yamada N, Sakate Y, Yashiro M, Maeda K, Ohira M, Nishino H, Hirakawa K: Up regulation of ICAM-1 gene expression inhibits tumour growth and liver metastasis in colorectal carcinoma. Eur J Cancer. 2005, 41: 1802-1810.
Jochems C, Schlom J: Tumor-infiltrating immune cells and prognosis: the potential link between conventional cancer therapy and immunity. Exp Biol Med (Maywood). 2011, 236: 567-579. 10.1258/ebm.2011.011007
Roland CL, Dineen SP, Toombs JE, Carbon JG, Smith CW, Brekken RA, Barnett CC: Tumor-derived intercellular adhesion molecule-1 mediates tumor-associated leukocyte infiltration in orthotopic pancreatic xenografts. Exp Biol Med (Maywood). 2010, 235: 263-270. 10.1258/ebm.2009.009215
Vesalainen S, Lipponen P, Talja M, Syrjänen K: Histological grade, perineural infiltration, tumour-infiltrating lymphocytes and apoptosis as determinants of long-term prognosis in prostatic adenocarcinoma. Eur J Cancer. 1994, 30A: 1797-1803.
Karja V, Aaltomaa S, Lipponen P, Isotalo T, Talja M, Mokka R: Tumour-infiltrating lymphocytes: a prognostic factor of PSA-free survival in patients with local prostate carcinoma treated by radical prostatectomy. Anticancer Res. 2005, 25: 4435-4438.
Tanaka H, Matsumura I, Ezoe S, Satoh Y, Sakamaki T, Albanese C, Machii T, Pestell RG, Kanakura Y: E2F1 and c-Myc potentiate apoptosis through inhibition of NF-kappaB activity that facilitates MnSOD-mediated ROS elimination. Mol Cell. 2002, 9: 1017-1029. 10.1016/S1097-2765(02)00522-1