E-cadherin, β-catenin, and ZEB1 in malignant progression of cancer
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yilmaz, M., Christofori, G., & Lehembre, F. (2007). Distinct mechanisms of tumor invasion and metastasis. Trends in Molecular Medicine, 13, 535–541.
Thiery, J. P. (2002). Epithelial-mesenchymal transitions in tumour progression. Nature Reviews Cancer, 2, 442–454.
Takahashi, E., Funato, N., Higashihori, N., Hata, Y., Gridley, T., & Nakamura, M. (2004). Snail regulates p21(WAF/CIP1) expression in cooperation with E2A and Twist. Biochemical and Biophysical Research Communications, 325, 1136–1144.
Yang, J., Mani, S. A., Donaher, J. L., Ramaswamy, S., Itzykson, R. A., Come, C., et al. (2004). Twist, a master regulator of morphogenesis, plays an essential role in tumor metastasis. Cell, 117, 927–939.
Batlle, E., Sancho, E., Franci, C., Dominguez, D., Monfar, M., Baulida, J., et al. (2000). The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nature Cell Biology, 2, 84–89.
Cano, A., Perez-Moreno, M. A., Rodrigo, I., Locascio, A., Blanco, M. J., del Barrio, M. G., et al. (2000). The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nature Cell Biology, 2, 76–83.
Guaita, S., Puig, I., Franci, C., Garrido, M., Dominguez, D., Batlle, E., et al. (2002). Snail induction of epithelial to mesenchymal transition in tumor cells is accompanied by MUC1 repression and ZEB1 expression. Journal of Biological Chemistry, 277, 39209–39216.
Peinado, H., Ballestar, E., Esteller, M., & Cano, A. (2004). Snail mediates E-cadherin repression by the recruitment of the Sin3A/histone deacetylase 1 (HDAC1)/HDAC2 complex. Molecular and Cellular Biology, 24, 306–319.
Hajra, K. M., Chen, D. Y., & Fearon, E. R. (2002). The SLUG zinc-finger protein represses E-cadherin in breast cancer. Cancer Research, 62, 1613–1618.
Bolos, V., Peinado, H., Perez-Moreno, M. A., Fraga, M. F., Esteller, M., & Cano, A. (2003). The transcription factor Slug represses E-cadherin expression and induces epithelial to mesenchymal transitions: a comparison with Snail and E47 repressors. Journal of Cell Science, 116, 499–511.
Comijn, J., Berx, G., Vermassen, P., Verschueren, K., van Grunsven, L., Bruyneel, E., et al. (2001). The two-handed E box binding zinc finger protein SIP1 downregulates E-cadherin and induces invasion. Molecular Cell, 7, 1267–1278.
Grooteclaes, M. L., & Frisch, S. M. (2000). Evidence for a function of CtBP in epithelial gene regulation and anoikis. Oncogene, 19, 3823–3828.
Funahashi, J., Sekido, R., Murai, K., Kamachi, Y., & Kondoh, H. (1993). Delta-crystallin enhancer binding protein delta EF1 is a zinc finger- homeodomain protein implicated in postgastrulation embryogenesis. Development, 119, 433–446.
Eger, A., Aigner, K., Sonderegger, S., Dampier, B., Oehler, S., Schreiber, M., et al. (2005). DeltaEF1 is a transcriptional repressor of E-cadherin and regulates epithelial plasticity in breast cancer cells. Oncogene, 24, 2375–2385.
Perez-Moreno, M., Jamora, C., & Fuchs, E. (2003). Sticky business: orchestrating cellular signals at adherens junctions. Cell, 112, 535–548.
Perez-Moreno, M., & Fuchs, E. (2006). Catenins: keeping cells from getting their signals crossed. Developmental Cell, 11, 601–612.
McNeill, H., Ozawa, M., Kemler, R., & Nelson, W. J. (1990). Novel function of the cell adhesion molecule uvomorulin as an inducer of cell surface polarity. Cell, 62, 309–316.
Wheelock, M. J., & Johnson, K. R. (2003). Cadherins as modulators of cellular phenotype. Annual Review of Cell and Developmental Biology, 19, 207–235.
Brabletz, T., Hlubek, F., Spaderna, S., Schmalhofer, O., Hiendlmeyer, E., Jung, A., et al. (2005). Invasion and metastasis in colorectal cancer: epithelial-mesenchymal transition, mesenchymal-epithelial transition, stem cells and beta-catenin. Cells Tissues Organs, 179, 56–65.
De Vries, W. N., Evsikov, A. V., Haac, B. E., Fancher, K. S., Holbrook, A. E., Kemler, R., et al. (2004). Maternal beta-catenin and E-cadherin in mouse development. Development, 131, 4435–4445.
Nose, A., & Takeichi, M. (1986). A novel cadherin cell adhesion molecule: its expression patterns associated with implantation and organogenesis of mouse embryos. Journal of Cell Biology, 103, 2649–2658.
Butz, S., & Larue, L. (1995). Expression of catenins during mouse embryonic development and in adult tissues. Cell Adhesion and Communication, 3, 337–352.
Takeichi, M. (1988). The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development, 102, 639–655.
Carver, E. A., Jiang, R., Lan, Y., Oram, K. F., & Gridley, T. (2001). The mouse snail gene encodes a key regulator of the epithelial-mesenchymal transition. Molecular and Cellular Biology, 21, 8184–8188.
Huber, O., Bierkamp, C., & Kemler, R. (1996). Cadherins and catenins in development. Current Opinion in Cell Biology, 8, 685–691.
Barbara, G., De Giorgio, R., Stanghellini, V., Corinaldesi, R., Cremon, C., Gerard, N., et al. (2003). Neutral endopeptidase (EC 3.4.24.11) downregulates the onset of intestinal inflammation in the nematode infected mouse. Gut, 52, 1457–1464.
Matsunami, H., & Takeichi, M. (1995). Fetal brain subdivisions defined by R- and E-cadherin expressions: evidence for the role of cadherin activity in region-specific, cell-cell adhesion. Developmental Biology, 172, 466–478.
Shimamura, K., Hirano, S., McMahon, A. P., & Takeichi, M. (1994). Wnt-1-dependent regulation of local E-cadherin and alpha N-catenin expression in the embryonic mouse brain. Development, 120, 2225–2234.
Shimamura, K., & Takeichi, M. (1992). Local and transient expression of E-cadherin involved in mouse embryonic brain morphogenesis. Development, 116, 1011–1019.
Shimamura, K., Takahashi, T., & Takeichi, M. (1992). E-cadherin expression in a particular subset of sensory neurons. Developmental Biology, 152, 242–254.
Nishimura, E. K., Yoshida, H., Kunisada, T., & Nishikawa, S. I. (1999). Regulation of E- and P-cadherin expression correlated with melanocyte migration and diversification. Developmental Biology, 215, 155–166.
Larue, L., Antos, C., Butz, S., Huber, O., Delmas, V., Dominis, M., et al. (1996). A role for cadherins in tissue formation. Development, 122, 3185–3194.
Riethmacher, D., Brinkmann, V., & Birchmeier, C. (1995). A targeted mutation in the mouse E-cadherin gene results in defective preimplantation development. Proceedings of the National Academy of Sciences of the United States of America, 92, 855–859.
Larue, L., Ohsugi, M., Hirchenhain, J., & Kemler, R. (1994). E-cadherin null mutant embryos fail to form a trophectoderm epithelium. Proceedings of the National Academy of Sciences of the United States of America, 91, 8263–8267.
Boussadia, O., Kutsch, S., Hierholzer, A., Delmas, V., & Kemler, R. (2002). E-cadherin is a survival factor for the lactating mouse mammary gland. Mechanisms of Development, 115, 53–62.
Tunggal, J. A., Helfrich, I., Schmitz, A., Schwarz, H., Gunzel, D., Fromm, M., et al. (2005). E-cadherin is essential for in vivo epidermal barrier function by regulating tight junctions. EMBO Journal, 24, 1146–1156.
Cali, G., Zannini, M., Rubini, P., Tacchetti, C., D’Andrea, B., Affuso, A., et al. (2007). Conditional inactivation of the E-cadherin gene in thyroid follicular cells affects gland development but does not impair junction formation. Endocrinology, 148, 2737–2746.
Tinkle, C. L., Lechler, T., Pasolli, H. A., & Fuchs, E. (2004). Conditional targeting of E-cadherin in skin: insights into hyperproliferative and degenerative responses. Proceedings of the National Academy of Sciences of the United States of America, 101, 552–557.
Young, P., Boussadia, O., Halfter, H., Grose, R., Berger, P., Leone, D. P., et al. (2003). E-cadherin controls adherens junctions in the epidermis and the renewal of hair follicles. EMBO Journal, 22, 5723–5733.
Hermiston, M. L., Wong, M. H., & Gordon, J. I. (1996). Forced expression of E-cadherin in the mouse intestinal epithelium slows cell migration and provides evidence for nonautonomous regulation of cell fate in a self-renewing system. Genes and Development, 10, 985–996.
Cavallaro, U., & Christofori, G. (2004). Cell adhesion and signalling by cadherins and Ig-CAMs in cancer. Nature Reviews Cancer, 4, 118–132.
Gottardi, C. J., Wong, E., & Gumbiner, B. M. (2001). E-cadherin suppresses cellular transformation by inhibiting beta-catenin signaling in an adhesion-independent manner. Journal of Cell Biology, 153, 1049–1060.
Kuphal, F., & Behrens, J. (2006). E-cadherin modulates Wnt-dependent transcription in colorectal cancer cells but does not alter Wnt-independent gene expression in fibroblasts. Experimental Cell Research, 312, 457–467.
Onder, T. T., Gupta, P. B., Mani, S. A., Yang, J., Lander, E. S., & Weinberg, R. A. (2008). Loss of E-cadherin promotes metastasis via multiple downstream transcriptional pathways. Cancer Research, 68, 3645–3654.
van Noort, M., & Clevers, H. (2002). TCF transcription factors, mediators of Wnt-signaling in development and cancer. Developmental Biology, 244, 1–8.
Behrens, J., Jerchow, B. A., Wurtele, M., Grimm, J., Asbrand, C., Wirtz, R., et al. (1998). Functional interaction of an axin homolog, conductin, with beta- catenin, APC, and GSK3beta. Science, 280, 596–599.
Kishida, S., Yamamoto, H., Ikeda, S., Kishida, M., Sakamoto, I., Koyama, S., et al. (1998). Axin, a negative regulator of the wnt signaling pathway, directly interacts with adenomatous polyposis coli and regulates the stabilization of beta-catenin. Journal of Biological Chemistry, 273, 10823–10826.
Amit, S., Hatzubai, A., Birman, Y., Andersen, J. S., Ben-Shushan, E., Mann, M., et al. (2002). Axin-mediated CKI phosphorylation of beta-catenin at Ser 45: a molecular switch for the Wnt pathway. Genes and Development, 16, 1066–1076.
Liu, C., Li, Y., Semenov, M., Han, C., Baeg, G. H., Tan, Y., et al. (2002). Control of beta-catenin phosphorylation/degradation by a dual-kinase mechanism. Cell, 108, 837–847.
Kitagawa, M., Hatakeyama, S., Shirane, M., Matsumoto, M., Ishida, N., Hattori, K., et al. (1999). An F-box protein, FWD1, mediates ubiquitin-dependent proteolysis of beta-catenin. EMBO Journal, 18, 2401–2410.
Fodde, R., Smits, R., & Clevers, H. (2001). APC, signal transduction and genetic instability in colorectal cancer. Nature Reviews Cancer, 1, 55–67.
Wehrli, M., Dougan, S. T., Caldwell, K., O’Keefe, L., Schwartz, S., Vaizel-Ohayon, D., et al. (2000). Arrow encodes an LDL-receptor-related protein essential for Wingless signalling. Nature, 407, 527–530.
Pinson, K. I., Brennan, J., Monkley, S., Avery, B. J., & Skarnes, W. C. (2000). An LDL-receptor-related protein mediates Wnt signalling in mice. Nature, 407, 535–538.
Yanagawa, S., van Leeuwen, F., Wodarz, A., Klingensmith, J., & Nusse, R. (1995). The dishevelled protein is modified by wingless signaling in Drosophila. Genes and Development, 9, 1087–1097.
Korinek, V., Barker, N., Morin, P. J., van Wichen, D., de Weger, R., Kinzler, K. W., et al. (1997). Constitutive transcriptional activation by a beta-catenin-Tcf complex in APC-/- colon carcinoma [see comments]. Science, 275, 1784–1787.
Behrens, J., von Kries, J. P., Kuhl, M., Bruhn, L., Wedlich, D., Grosschedl, R., et al. (1996). Functional interaction of beta-catenin with the transcription factor LEF-1. Nature, 382, 638–642.
Clevers, H., & van de Wetering, M. (1997). TCF/LEF factor earn their wings. Trends in Genetics, 13, 485–489.
Kramps, T., Peter, O., Brunner, E., Nellen, D., Froesch, B., Chatterjee, S., et al. (2002). Wnt/wingless signaling requires BCL9/legless-mediated recruitment of pygopus to the nuclear beta-catenin-TCF complex. Cell, 109, 47–60.
Takemaru, K., Yamaguchi, S., Lee, Y. S., Zhang, Y., Carthew, R. W., & Moon, R. T. (2003). Chibby, a nuclear beta-catenin-associated antagonist of the Wnt/Wingless pathway. Nature, 422, 905–909.
Takemaru, K. I., & Moon, R. T. (2000). The transcriptional coactivator CBP interacts with beta-catenin to activate gene expression. Journal of Cell Biology, 149, 249–254.
Barker, N., Hurlstone, A., Musisi, H., Miles, A., Bienz, M., & Clevers, H. (2001). The chromatin remodelling factor Brg-1 interacts with beta-catenin to promote target gene activation. EMBO Journal, 20, 4935–4943.
Pollheimer, J., Loregger, T., Sonderegger, S., Saleh, L., Bauer, S., Bilban, M., et al. (2006). Activation of the canonical wingless/t-cell factor signaling pathway promotes invasive differentiation of human trophoblast. American Journal of Pathology, 168, 1134–1147.
Cadigan, K. M., & Nusse, R. (1997). Wnt signaling: a common theme in animal development. Genes and Development, 11, 3286–3305.
Angerer, L., & Angerer, R. (1999). Regulative development of the sea urchin embryo: signalling cascades and morphogen gradients. Seminars in Cell and Developmental Biology, 10, 327–334.
Liebner, S., Cattelino, A., Gallini, R., Rudini, N., Iurlaro, M., Piccolo, S., et al. (2004). Beta-catenin is required for endothelial-mesenchymal transformation during heart cushion development in the mouse. Journal of Cell Biology, 166, 359–367.
Haegel, H., Larue, L., Ohsugi, M., Fedorov, L., Herrenknecht, K., & Kemler, R. (1995). Lack of beta-catenin affects mouse development at gastrulation. Development, 121, 3529–3537.
Gat, U., DasGupta, R., Degenstein, L., & Fuchs, E. (1998). De Novo hair follicle morphogenesis and hair tumors in mice expressing a truncated beta-catenin in skin. Cell, 95, 605–614.
Huelsken, J., Vogel, R., Erdmann, B., Cotsarelis, G., & Birchmeier, W. (2001). beta-Catenin controls hair follicle morphogenesis and stem cell differentiation in the skin. Cell, 105, 533–545.
Staal, F. J., Meeldijk, J., Moerer, P., Jay, P., van de Weerdt, B. C., Vainio, S., et al. (2001). Wnt signaling is required for thymocyte development and activates Tcf-1 mediated transcription. European Journal of Immunology, 31, 285–293.
Brault, V., Moore, R., Kutsch, S., Ishibashi, M., Rowitch, D. H., McMahon, A. P., et al. (2001). Inactivation of the beta-catenin gene by Wnt1-Cre-mediated deletion results in dramatic brain malformation and failure of craniofacial development. Development, 128, 1253–1264.
Ishikawa, T., Tamai, Y., Zorn, A. M., Yoshida, H., Seldin, M. F., Nishikawa, S., et al. (2001). Mouse Wnt receptor gene Fzd5 is essential for yolk sac and placental angiogenesis. Development, 128, 25–33.
Ross, S. E., Hemati, N., Longo, K. A., Bennett, C. N., Lucas, P. C., Erickson, R. L., et al. (2000). Inhibition of adipogenesis by Wnt signaling. Science, 289, 950–953.
Barker, N., Huls, G., Korinek, V., & Clevers, H. (1999). Restricted high level expression of Tcf-4 protein in intestinal and mammary gland epithelium. American Journal of Pathology, 154, 29–35.
Korinek, V., Barker, N., Moerer, P., van Donselaar, E., Huls, G., Peters, P. J., et al. (1998). Depletion of epithelial stem-cell compartments in the small intestine of mice lacking Tcf-4. Nature Genetics, 19, 379–383.
Taipale, J., & Beachy, P. A. (2001). The Hedgehog and Wnt signalling pathways in cancer. Nature, 411, 349–354.
Herzig, M., Savarese, F., Novatchkova, M., Semb, H., & Christofori, G. (2007). Tumor progression induced by the loss of E-cadherin independent of beta-catenin/Tcf-mediated Wnt signaling. Oncogene, 26, 2290–2298.
van de Wetering, M., Barker, N., Harkes, I. C., van der Heyden, M., Dijk, N. J., Hollestelle, A., et al. (2001). Mutant E-cadherin breast cancer cells do not display constitutive Wnt signaling. Cancer Research, 61, 278–284.
Rubinfeld, B., Souza, B., Albert, I., Muller, O., Chamberlain, S. H., Masiarz, F. R., et al. (1993). Association of the APC gene product with beta-catenin. Science, 262, 1731–1734.
Huelsken, J., & Behrens, J. (2002). The Wnt signalling pathway. Jouranl of Cell Science, 115, 3977–3978.
Perl, A. K., Wilgenbus, P., Dahl, U., Semb, H., & Christofori, G. (1998). A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 392, 190–193.
Birchmeier, W., & Behrens, J. (1994). Cadherin expression in carcinomas: role in the formation of cell junctions and the prevention of invasiveness. Biochimica et Biophysica Acta, 1198, 11–26.
Behrens, J., Mareel, M. M., Van Roy, F. M., & Birchmeier, W. (1989). Dissecting tumor cell invasion: epithelial cells acquire invasive properties after the loss of uvomorulin-mediated cell-cell adhesion. Journal of Cell Biology, 108, 2435–2447.
Frixen, U. H., Behrens, J., Sachs, M., Eberle, G., Voss, B., Warda, A., et al. (1991). E-cadherin-mediated cell-cell adhesion prevents invasiveness of human carcinoma cells. Journal of Cell Biology, 113, 173–185.
Vleminckx, K., Vakaet Jr., L., Mareel, M., Fiers, W., & van Roy, F. (1991). Genetic manipulation of E-cadherin expression by epithelial tumor cells reveals an invasion suppressor role. Cell, 66, 107–119.
Takeichi, M. (1995). Morphogenetic roles of classic cadherins. Current Opinion in Cell Biology, 7, 619–627.
Kemler, R. (1993). From Cadherins to Catenins: cytoplasmic proetin interactions and regulation of cell adhesion. Trend in Genetics, 9, 317–321.
Berx, G., Cleton-Jansen, A. M., Strumane, K., de Leeuw, W. J., Nollet, F., van Roy, F., et al. (1996). E-cadherin is inactivated in a majority of invasive human lobular breast cancers by truncation mutations throughout its extracellular domain. Oncogene, 13, 1919–1925.
Risinger, J. I., Berchuck, A., Kohler, M. F., & Boyd, J. (1994). Mutations of the E-cadherin gene in human gynecologic cancers. Nature Genetics, 7, 98–102.
Oda, T., Kanai, Y., Oyama, T., Yoshiura, K., Shimoyama, Y., Birchmeier, W., et al. (1994). E-cadherin gene mutations in human gastric carcinoma cell lines. Proceedings of the National Academy of Sciences of the United States of America, 91, 1858–1862.
Tamura, G., Sakata, K., Nishizuka, S., Maesawa, C., Suzuki, Y., Iwaya, T., et al. (1996). Inactivation of the E-cadherin gene in primary gastric carcinomas and gastric carcinoma cell lines. Japanese Journal of Cancer Research, 87, 1153–1159.
Guilford, P., Hopkins, J., Harraway, J., McLeod, M., McLeod, N., Harawira, P., et al. (1998). E-cadherin germline mutations in familial gastric cancer. Nature, 392, 402–405.
Guilford, P. J., Hopkins, J. B., Grady, W. M., Markowitz, S. D., Willis, J., Lynch, H., et al. (1999). E-cadherin germline mutations define an inherited cancer syndrome dominated by diffuse gastric cancer. Human Mutation, 14, 249–255.
Graff, J. R., Gabrielson, E., Fujii, H., Baylin, S. B., & Herman, J. G. (2000). Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. Journal of Biological Chemistry, 275, 2727–2732.
Lynch, H. T., Grady, W., Lynch, J. F., Tsuchiya, K. D., Wiesner, G., & Markowitz, S. D. (2000). E-cadherin mutation-based genetic counseling and hereditary diffuse gastric carcinoma. Cancer Genet Cytogenet, 122, 1–6.
Caldeira, J. R., Prando, E. C., Quevedo, F. C., Neto, F. A., Rainho, C. A., & Rogatto, S. R. (2006). CDH1 promoter hypermethylation and E-cadherin protein expression in infiltrating breast cancer. BMC Cancer, 6, 48.
Nass, S. J., Herman, J. G., Gabrielson, E., Iversen, P. W., Parl, F. F., Davidson, N. E., et al. (2000). Aberrant methylation of the estrogen receptor and E-cadherin 5′ CpG islands increases with malignant progression in human breast cancer. Cancer Research, 60, 4346–4348.
Azarschab, P., Stembalska, A., Loncar, M. B., Pfister, M., Sasiadek, M. M., & Blin, N. (2003). Epigenetic control of E-cadherin (CDH1) by CpG methylation in metastasising laryngeal cancer. Oncology Reports, 10, 501–503.
Wheeler, J. M., Kim, H. C., Efstathiou, J. A., Ilyas, M., Mortensen, N. J., & Bodmer, W. F. (2001). Hypermethylation of the promoter region of the E-cadherin gene (CDH1) in sporadic and ulcerative colitis associated colorectal cancer. Gut, 48, 367–371.
Vicovac, L., & Aplin, J. D. (1996). Epithelial-mesenchymal transition during trophoblast differentiation. Acta Anat (Basel), 156, 202–216.
Bloch-Zupan, A., Hunter, N., Manthey, A., & Gibbins, J. (2001). R-twist gene expression during rat palatogenesis. International Journal of Developmental Biology, 45, 397–404.
Selleck, M. A., & Bronner-Fraser, M. (2000). Avian neural crest cell fate decisions: a diffusible signal mediates induction of neural crest by the ectoderm. International Journal of Developmental Neuroscience, 18, 621–627.
Fata, J. E., Werb, Z., & Bissell, M. J. (2004). Regulation of mammary gland branching morphogenesis by the extracellular matrix and its remodeling enzymes. Breast Cancer Research, 6, 1–11.
Viebahn, C. (1995). Epithelio-mesenchymal transformation during formation of the mesoderm in the mammalian embryo. Acta Anatomica, 154, 79–97.
Kim, K., Lu, Z., & Hay, E. D. (2002). Direct evidence for a role of beta-catenin/LEF-1 signaling pathway in induction of EMT. Cell Biology International, 26, 463–476.
Lee, J. M., Dedhar, S., Kalluri, R., & Thompson, E. W. (2006). The epithelial-mesenchymal transition: new insights in signaling, development, and disease. Journal of Cell Biology, 172, 973–981.
Agiostratidou, G., Hulit, J., Phillips, G. R., & Hazan, R. B. (2007). Differential cadherin expression: potential markers for epithelial to mesenchymal transformation during tumor progression. Journal of Mammary Gland Biology and Neoplasia, 12, 127–133.
Thiery, J. P., & Sleeman, J. P. (2006). Complex networks orchestrate epithelial-mesenchymal transitions. Nature Reviews Molecular Cell Biology, 7, 131–142.
Morel, A. P., Lievre, M., Thomas, C., Hinkal, G., Ansieau, S., & Puisieux, A. (2008). Generation of breast cancer stem cells through epithelial-mesenchymal transition. PLoS ONE, 3, e2888.
Mani, S. A., Guo, W., Liao, M. J., Eaton, E. N., Ayyanan, A., Zhou, A. Y., et al. (2008). The epithelial-mesenchymal transition generates cells with properties of stem cells. Cell, 133, 704–715.
Peinado, H., Olmeda, D., & Cano, A. (2007). Snail, Zeb and bHLH factors in tumour progression: an alliance against the epithelial phenotype? Nature Reviews Cancer, 7, 415–428.
Lai, Z. C., Fortini, M. E., & Rubin, G. M. (1991). The embryonic expression patterns of zfh-1 and zfh-2, two Drosophila genes encoding novel zinc-finger homeodomain proteins. Mechanisms of Development, 34, 123–134.
Lai, Z. C., Rushton, E., Bate, M., & Rubin, G. M. (1993). Loss of function of the Drosophila zfh-1 gene results in abnormal development of mesodermally derived tissues. Proceedings of the National Academy of Sciences of the United States of America, 90, 4122–4126.
Takagi, T., Moribe, H., Kondoh, H., & Higashi, Y. (1998). DeltaEF1, a zinc finger and homeodomain transcription factor, is required for skeleton patterning in multiple lineages. Development, 125, 21–31.
Higashi, Y., Moribe, H., Takagi, T., Sekido, R., Kawakami, K., Kikutani, H., et al. (1997). Impairment of T cell development in deltaEF1 mutant mice. Journal of Experimental Medicine, 185, 1467–1479.
Liu, Y., El-Naggar, S., Darling, D. S., Higashi, Y., & Dean, D. C. (2008). Zeb1 links epithelial-mesenchymal transition and cellular senescence. Development, 135, 579–588.
Genetta, T., Ruezinsky, D., & Kadesch, T. (1994). Displacement of an E-box-binding repressor by basic helix-loop-helix proteins: implications for B-cell specificity of the immunoglobulin heavy-chain enhancer. Molecular and Cellular Biology, 14, 6153–6163.
Williams, T. M., Moolten, D., Burlein, J., Romano, J., Bhaerman, R., Godillot, A., et al. (1991). Identification of a zinc finger protein that inhibits IL-2 gene expression. Science, 254, 1791–1794.
Kraus, R. J., Perrigoue, J. G., & Mertz, J. E. (2003). ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein-Barr virus. Journal of Virology, 77, 199–207.
Remacle, J. E., Kraft, H., Lerchner, W., Wuytens, G., Collart, C., Verschueren, K., et al. (1999). New mode of DNA binding of multi-zinc finger transcription factors: deltaEF1 family members bind with two hands to two target sites. EMBO Journal, 18, 5073–5084.
Gregoire, J. M., & Romeo, P. H. (1999). T-cell expression of the human GATA-3 gene is regulated by a non- lineage-specific silencer. Journal of Biological Chemistry, 274, 6567–6578.
Fontemaggi, G., Gurtner, A., Strano, S., Higashi, Y., Sacchi, A., Piaggio, G., et al. (2001). The transcriptional repressor ZEB regulates p73 expression at the crossroad between proliferation and differentiation. Molecular and Cellular Biology, 21, 8461–8470.
Murray, D., Precht, P., Balakir, R., & Horton Jr., W. E. (2000). The transcription factor deltaEF1 is inversely expressed with type II collagen mRNA and can repress Col2a1 promoter activity in transfected chondrocytes. Journal of Biological Chemistry, 275, 3610–3618.
Terraz, C., Toman, D., Delauche, M., Ronco, P., & Rossert, J. (2001). delta Ef1 binds to a far upstream sequence of the mouse pro-alpha 1(I) collagen gene and represses its expression in osteoblasts. Journal of Biological Chemistry, 276, 37011–37019.
Brabletz, T., Jung, A., Hlubek, F., Lohberg, C., Meiler, J., Suchy, U., et al. (1999). Negative regulation of CD4 expression in T cells by the transcriptional repressor ZEB. International Immunology, 11, 1701–1708.
Nishimura, G., Manabe, I., Tsushima, K., Fujiu, K., Oishi, Y., Imai, Y., et al. (2006). DeltaEF1 mediates TGF-beta signaling in vascular smooth muscle cell differentiation. Developmental Cell, 11, 93–104.
Chamberlain, E. M., & Sanders, M. M. (1999). Identification of the novel player deltaEF1 in estrogen transcriptional cascades. Molecular Cellular Biology, 19, 3600–3606.
Lazarova, D. L., Bordonaro, M., & Sartorelli, A. C. (2001). Transcriptional regulation of the vitamin D(3) receptor gene by ZEB. Cell Growth and Differentiation, 12, 319–326.
Postigo, A. A. (2003). Opposing functions of ZEB proteins in the regulation of the TGFbeta/BMP signaling pathway. EMBO Journal, 22, 2443–2452.
Postigo, A. A., Depp, J. L., Taylor, J. J., & Kroll, K. L. (2003). Regulation of Smad signaling through a differential recruitment of coactivators and corepressors by ZEB proteins. EMBO Journal, 22, 2453–2462.
van Grunsven, L. A., Taelman, V., Michiels, C., Opdecamp, K., Huylebroeck, D., & Bellefroid, E. J. (2006). deltaEF1 and SIP1 are differentially expressed and have overlapping activities during Xenopus embryogenesis. Developmental Dynamics, 235, 1491–1500.
Korpal, M., Lee, E. S., Hu, G., & Kang, Y. (2008). The miR-200 family inhibits epithelial-mesenchymal transition and cancer cell migration by direct targeting of E-cadherin transcriptional repressors ZEB1 and ZEB2. Journal of Biological Chemistry, 283, 14910–14914.
Gregory, P. A., Bert, A. G., Paterson, E. L., Barry, S. C., Tsykin, A., Farshid, G., et al. (2008). The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biology, 10, 593–601.
Gilles, C., Polette, M., Birembaut, P., Brunner, N., & Thompson, E. W. (1997). Expression of c-ets-1 mRNA is associated with an invasive, EMT-derived phenotype in breast carcinoma cell lines. Clinical and Experimental Metastasis, 15, 519–526.
Rodrigo, I., Cato, A. C., & Cano, A. (1999). Regulation of E-cadherin gene expression during tumor progression: the role of a new Ets-binding site and the E-pal element. Experimental Cell Research, 248, 358–371.
Burk, U., Schubert, J., Wellner, U., Schmalhofer, O., Vincan, E., Spaderna, S., et al. (2008). A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Report, 9, 582–589.
Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S., & Nakshatri, H. (2007). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26, 711–724.
Irie, H. Y., Pearline, R. V., Grueneberg, D., Hsia, M., Ravichandran, P., Kothari, N., et al. (2005). Distinct roles of Akt1 and Akt2 in regulating cell migration and epithelial-mesenchymal transition. Journal of Cell Biology, 171, 1023–1034.
Kawada, M., Inoue, H., Masuda, T., & Ikeda, D. (2006). Insulin-like growth factor I secreted from prostate stromal cells mediates tumor-stromal cell interactions of prostate cancer. Cancer Research, 66, 4419–4425.
Miyamoto, S., Nakamura, M., Shitara, K., Nakamura, K., Ohki, Y., Ishii, G., et al. (2005). Blockade of paracrine supply of insulin-like growth factors using neutralizing antibodies suppresses the liver metastasis of human colorectal cancers. Clinical Cancer Research, 11, 3494–3502.
Graham, T. R., Zhau, H. E., Odero-Marah, V. A., Osunkoya, A. O., Kimbro, K. S., Tighiouart, M., et al. (2008). Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Research, 68, 2479–2488.
Weber, K. L., Doucet, M., & Price, J. E. (2003). Renal cell carcinoma bone metastasis: epidermal growth factor receptor targeting. Clin Orthop Relat Res, 415, S86–94.
Verbeek, B. S., Adriaansen-Slot, S. S., Vroom, T. M., Beckers, T., & Rijksen, G. (1998). Overexpression of EGFR and c-erbB2 causes enhanced cell migration in human breast cancer cells and NIH3T3 fibroblasts. FEBS Letters, 425, 145–150.
Lu, Z., Ghosh, S., Wang, Z., & Hunter, T. (2003). Downregulation of caveolin-1 function by EGF leads to the loss of E-cadherin, increased transcriptional activity of beta-catenin, and enhanced tumor cell invasion. Cancer Cell, 4, 499–515.
Wang, F., Sloss, C., Zhang, X., Lee, S. W., & Cusack, J. C. (2007). Membrane-bound heparin-binding epidermal growth factor like growth factor regulates E-cadherin expression in pancreatic carcinoma cells. Cancer Research, 67, 8486–8493.
Yang, L., Amann, J. M., Kikuchi, T., Porta, R., Guix, M., Gonzalez, A., et al. (2007). Inhibition of epidermal growth factor receptor signaling elevates 15-hydroxyprostaglandin dehydrogenase in non-small-cell lung cancer. Cancer Research, 67, 5587–5593.
Richer, J. K., Jacobsen, B. M., Manning, N. G., Abel, M. G., Wolf, D. M., & Horwitz, K. B. (2002). Differential gene regulation by the two progesterone receptor isoforms in human breast cancer cells. Journal of Biological Chemistry, 277, 5209–5218.
Dohadwala, M., Yang, S. C., Luo, J., Sharma, S., Batra, R. K., Huang, M., et al. (2006). Cyclooxygenase-2-dependent regulation of E-Cadherin: prostaglandin E2 induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Research, 66, 5338–5345.
Manavella, P. A., Roqueiro, G., Darling, D. S., & Cabanillas, A. M. (2007). The ZFHX1A gene is differentially autoregulated by its isoforms. Biochemical and Biophysical Research Communications, 360, 621–626.
Liu, Y., Costantino, M. E., Montoya-Durango, D., Higashi, Y., Darling, D. S., & Dean, D. C. (2007). The zinc finger transcription factor ZFHX1A is linked to cell proliferation by Rb-E2F1. Biochemical Journal, 408, 79–85.
Anose, B. M., LaGoo, L., & Schwendinger, J. (2008). Characterization of androgen regulation of ZEB-1 and PSA in 22RV1 prostate cancer cells. Advances in Experimental Medicine and Biology, 617, 541–546.
Krishnamachary, B., Zagzag, D., Nagasawa, H., Rainey, K., Okuyama, H., Baek, J. H., et al. (2006). Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Research, 66, 2725–2731.
Singh, M., Spoelstra, N. S., Jean, A., Howe, E., Torkko, K. C., Clark, H. R., et al. (2008). ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Modern Pathology, 21, 912–923.
Spoelstra, N. S., Manning, N. G., Higashi, Y., Darling, D., Singh, M., Shroyer, K. R., et al. (2006). The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Research, 66, 3893–3902.
Chua, H. L., Bhat-Nakshatri, P., Clare, S. E., Morimiya, A., Badve, S., & Nakshatri, H. (2006). NF-kappaB represses E-cadherin expression and enhances epithelial to mesenchymal transition of mammary epithelial cells: potential involvement of ZEB-1 and ZEB-2. Oncogene, 26, 711–724.
Aigner, K., Descovich, L., Mikula, M., Sultan, A., Dampier, B., Bonne, S., et al. (2007). The transcription factor ZEB1 (deltaEF1) represses Plakophilin 3 during human cancer progression. FEBS Lett, 581, 1617–1624.
Aigner, K., Dampier, B., Descovich, L., Mikula, M., Sultan, A., Schreiber, M., et al. (2007). The transcription factor ZEB1 (deltaEF1) promotes tumour cell dedifferentiation by repressing master regulators of epithelial polarity. Oncogene, 26, 6979–6988.
Kleer, C. G., Zhang, Y., Pan, Q., & Merajver, S. D. (2004). WISP3 (CCN6) is a secreted tumor-suppressor protein that modulates IGF signaling in inflammatory breast cancer. Neoplasia, 6, 179–185.
Zhang, Y., Pan, Q., Zhong, H., Merajver, S. D., & Kleer, C. G. (2005). Inhibition of CCN6 (WISP3) expression promotes neoplastic progression and enhances the effects of insulin-like growth factor-1 on breast epithelial cells. Breast Cancer Res, 7, R1080–1089.
Kleer, C. G., Zhang, Y., & Merajver, S. D. (2007). CCN6 (WISP3) as a new regulator of the epithelial phenotype in breast cancer. Cells Tissues Organs, 185, 95–99.
Ohira, T., Gemmill, R. M., Ferguson, K., Kusy, S., Roche, J., Brambilla, E., et al. (2003). WNT7a induces E-cadherin in lung cancer cells. Proceedings of the National Academy of Sciences of the United States of America, 100, 10429–10434.
Park, S. M., Gaur, A. B., Lengyel, E., & Peter, M. E. (2008). The miR-200 family determines the epithelial phenotype of cancer cells by targeting the E-cadherin repressors ZEB1 and ZEB2. Genes and Development, 22, 894–907.
Oving, I. M., & Clevers, H. C. (2002). Molecular causes of colon cancer. European Journal of Clinical Investigation, 32, 448–457.
Behrens, J. (2005). The role of the Wnt signalling pathway in colorectal tumorigenesis. Biochemical Society Transactions, 33, 672–675.
Hlubek, F., Spaderna, S., Schmalhofer, O., Jung, A., Kirchner, T., & Brabletz, T. (2007). Wnt/FZD signaling and colorectal cancer morphogenesis. Frontiers in Bioscience, 12, 458–470.
Kinzler, K. W., & Vogelstein, B. (1996). Lessons from hereditary colorectal cancer. Cell, 87, 159–170.
de Santa Barbara, P., van den Brink, G. R., & Roberts, D. J. (2003). Development and differentiation of the intestinal epithelium. Cellular and Molecular Life Sciences, 60, 1322–1332.
Sancho, E., Batlle, E., & Clevers, H. (2003). Live and let die in the intestinal epithelium. Current Opinion in Cell Biology, 15, 763–770.
Brabletz, T., Jung, A., Reu, S., Porzner, M., Hlubek, F., Kunz-Schughart, L., et al. (2001). Variable beta-catenin expression in colorectal cancer indicates a tumor progression driven by the tumor environment. Proceedings of the National Academy of Sciences of the United States of America, 98, 10356–10361.
Brabletz, T., Jung, A., & Kirchner, T. (2002). Beta-catenin and the morphogenesis of colorectal cancer. Virchows Archiv, 441, 1–11.
Ueno, H., Mochizuki, H., Hatsuse, K., Hase, K., & Yamamoto, T. (2000). Indicators for treatment strategies of colorectal liver metastases. Annals of Surgery, 231, 59–66.
Hlubek, F., Jung, A., Kotzor, N., Kirchner, T., & Brabletz, T. (2001). Expression of the invasion factor laminin g2 in colorectal carcinomas is regulated by b-catenin. Cancer Research, 61, 8089–8093.
Mariadason, J. M., Bordonaro, M., Aslam, F., Shi, L., Kuraguchi, M., Velcich, A., et al. (2001). Down-regulation of beta-catenin TCF signaling is linked to colonic epithelial cell differentiation. Cancer Research, 61, 3465–3471.
Naishiro, Y., Yamada, T., Takaoka, A. S., Hayashi, R., Hasegawa, F., Imai, K., et al. (2001). Restoration of epithelial cell polarity in a colorectal cancer cell line by suppression of beta-catenin/T-cell factor 4-mediated gene transactivation. Cancer Research, 61, 2751–2758.
Brabletz, T., Jung, A., Spaderna, S., Hlubek, F., & Kirchner, T. (2005). Opinion: migrating cancer stem cells - an integrated concept of malignant tumour progression. Nature Reviews Cancer, 5, 744–749.
Tetsu, O., & McCormick, F. (1999). Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells [In Process Citation]. Nature, 398, 422–426.
Shtutman, M., Zhurinsky, J., Simcha, I., Albanese, C., D’Amico, M., Pestell, R., et al. (1999). The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proceedings of the National Academy of Sciences of the United States of America, 96, 5522–5527.
He, T. C., Sparks, A. B., Rago, C., Hermeking, H., Zawel, L., da Costa, L. T., et al. (1998). Identification of c-MYC as a target of the APC pathway [see comments]. Science, 281, 1509–1512.
Zhang, T., Otevrel, T., Gao, Z., Ehrlich, S. M., Fields, J. Z., & Boman, B. M. (2001). Evidence that APC regulates survivin expression: a possible mechanism contributing to the stem cell origin of colon cancer. Cancer Research, 61, 8664–8667.
Yamada, T., Takaoka, A. S., Naishiro, Y., Hayashi, R., Maruyama, K., Maesawa, C., et al. (2000). Transactivation of the multidrug resistance 1 gene by T-cell factor 4/beta-catenin complex in early colorectal carcinogenesis. Cancer Research, 60, 4761–4766.
Fodde, R., & Brabletz, T. (2007). Wnt/beta-catenin signaling in cancer stemness and malignant behavior. Current Opinion in Cell Biology, 19, 150–158.
Stemmer, V., de Craene, B., Berx, G., & Behrens, J. (2008). Snail promotes Wnt target gene expression and interacts with beta-catenin. Oncogene, 27, 5075–5080.
Roy, H. K., Smyrk, T. C., Koetsier, J., Victor, T. A., & Wali, R. K. (2005). The transcriptional repressor SNAIL is overexpressed in human colon cancer. Digestive Diseases and Sciences, 50, 42–46.
Conacci-Sorrell, M., Simcha, I., Ben-Yedidia, T., Blechman, J., Savagner, P., & Ben-Ze’ev, A. (2003). Autoregulation of E-cadherin expression by cadherin-cadherin interactions: the roles of beta-catenin signaling, Slug, and MAPK. Journal of Cell Biology, 163, 847–857.
Shioiri, M., Shida, T., Koda, K., Oda, K., Seike, K., Nishimura, M., et al. (2006). Slug expression is an independent prognostic parameter for poor survival in colorectal carcinoma patients. British Journal of Cancer, 94, 1816–1822.
Peinado, H., Portillo, F., & Cano, A. (2004). Transcriptional regulation of cadherins during development and carcinogenesis. International Journal of Developmental Biology, 48, 365–375.
Hlubek, F., Brabletz, T., Budczies, J., Pfeiffer, S., Jung, A., & Kirchner, T. (2007). Heterogeneous expression of Wnt/beta-catenin target genes within colorectal cancer. International Journal of Cancer, 121, 1941–1948.
Spaderna, S., Schmalhofer, O., Hlubek, F., Berx, G., Eger, A., Merkel, S., et al. (2006). A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology, 131, 830–840.
Bates, R. C., & Mercurio, A. M. (2003). Tumor necrosis factor-alpha stimulates the epithelial-to-mesenchymal transition of human colonic organoids. Molecular Biology of the Cell, 14, 1790–1800.
Jungck, M., Grunhage, F., Spengler, U., Dernac, A., Mathiak, M., Caspari, R., et al. (2004). E-cadherin expression is homogeneously reduced in adenoma from patients with familial adenomatous polyposis: an immunohistochemical study of E-cadherin, beta-catenin and cyclooxygenase-2 expression. Int J Colorectal Dis, 19, 438–445.
Dohadwala, M., Luo, J., Zhu, L., Lin, Y., Dougherty, G. J., Sharma, S., et al. (2001). Non-small cell lung cancer cyclooxygenase-2-dependent invasion is mediated by CD44. Journal of Biological Chemistry, 276, 20809–20812.
Dohadwala, M., Batra, R. K., Luo, J., Lin, Y., Krysan, K., Pold, M., et al. (2002). Autocrine/paracrine prostaglandin E2 production by non-small cell lung cancer cells regulates matrix metalloproteinase-2 and CD44 in cyclooxygenase-2-dependent invasion. Journal of Biological Chemistry, 277, 50828–50833.
Tsujii, M., Kawano, S., & DuBois, R. N. (1997). Cyclooxygenase-2 expression in human colon cancer cells increases metastatic potential. Proceedings of the National Academy of Sciences of the United States of America, 94, 3336–3340.
Longo, K. A., Kennell, J. A., Ochocinska, M. J., Ross, S. E., Wright, W. S., & MacDougald, O. A. (2002). Wnt signaling protects 3T3-L1 preadipocytes from apoptosis through induction of insulin-like growth factors. Journal of Biological Chemistry, 277, 38239–38244.
Dannenberg, A. J., & Zakim, D. (1999). Chemoprevention of colorectal cancer through inhibition of cyclooxygenase-2. Seminars in Oncology, 26, 499–504.
Shao, J., Jung, C., Liu, C., & Sheng, H. (2005). Prostaglandin E2 Stimulates the beta-catenin/T cell factor-dependent transcription in colon cancer. Journal of Biological Chemistry, 280, 26565–26572.
Jin, T., George Fantus, I., & Sun, J. (2008). Wnt and beyond Wnt: Multiple mechanisms control the transcriptional property of beta-catenin. Cellular Signalling, 20, 1697–1704.
Spaderna, S., Schmalhofer, O., Wahlbuhl, M., Dimmler, A., Bauer, K., Sultan, A., et al. (2008). The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Research, 68, 537–544.
Barsky, S. H., Siegal, G. P., Jannotta, F., & Liotta, L. A. (1983). Loss of basement membrane components by invasive tumors but not by their benign counterparts. Laboratory Investigation, 49, 140–147.
Wodarz, A., & Nathke, I. (2007). Cell polarity in development and cancer. Nat Cell Biol, 9, 1016–1024.
Marazuela, M., & Alonso, M. A. (2004). Expression of MAL and MAL2, two elements of the protein machinery for raft-mediated transport, in normal and neoplastic human tissue. Histology and Histopathology, 19, 925–933.
Woodhouse, E., Hersperger, E., & Shearn, A. (1998). Growth, metastasis, and invasiveness of Drosophila tumors caused by mutations in specific tumor suppressor genes. Development Genes and Evolution, 207, 542–550.
Baskerville, S., & Bartel, D. P. (2005). Microarray profiling of microRNAs reveals frequent coexpression with neighboring miRNAs and host genes. RNA, 11, 241–247.
Lu, J., Getz, G., Miska, E. A., Alvarez-Saavedra, E., Lamb, J., Peck, D., et al. (2005). MicroRNA expression profiles classify human cancers. Nature, 435, 834–838.