Dynamics of tumor growth: chemotherapy and integrative oncology

T. Reis de Souza1, Paulo Fernando de Arruda Mancera1, Rodney Carlos Bassanezi2
1UEPB - Universidade Estadual da Paraíba, Rua Baraúnas, 351 - Bairro Universitário, Campina Grande, Brazil
2UNICAMP, Instituto de Matemática, Estatística e Computação Científica, Campinas, Brazil

Tóm tắt

Từ khóa


Tài liệu tham khảo

Araujo RP, McElwain DLS (2004) A history of the study of solid tumour growth: the contribution of mathematical modelling. Bull Math Biol 66:1039–1091. https://doi.org/10.1016/j.bulm.2003.11.002

Bajzer Z, Vuk-Pavlovic S (2000) New dimensions in Gompertzian growth. J Theor Med 2(4):307–315. https://doi.org/10.1080/10273660008833057

Barros LC, Bassanezi RC, Lodwick W (2017) A first course in fuzzy logic, fuzzy dynamical systems and biomathematics: theory and applications, vol 347. Springer, Heidelberg

Benzekry S, Pasquier E, Barbolosi D, Lacarelle B, Barlési F, André N, Ciccolini J (2015) Metronomic reloaded: theoretical models bringing chemotherapy into the era of precision medicine. Semin Cancer Biol 35:53–61. https://doi.org/10.1016/j.semcancer.2015.09.002

Bontempi G (1995) Modeling with uncertainty in continuous dynamical systems: the probability and possibility approach. Rapport Tech., pp 95–116

Bressan A, Piccoli B (2007) Introduction to the mathematical theory of control. American Institute of Mathematical Sciences, Springfield

Byrne HM, Alarcon T, Owen MR, Webb SD, Maini PK (2006) Modelling aspects of cancer dynamics: a review. Philos Trans R Soc A 364:1563–1578. https://doi.org/10.1098/rsta.2006.1786

Cancer Research Institute (2019). https://www.cancerresearch.org/CRI/media/PDF-Content/ Cancer-and-the-Immune-System_2017-final_print.pdf . Accessed Jan 2019

de Pillis LG, Radunskaya A (2001) A mathematical tumor model with immune resistance and drug therapy: an optimal control approach. J Theor Med 3(2):79–100. https://doi.org/10.1080/10273660108833067

de Pillis LG, Radunskaya A, Wiseman CL (2005) A validated mathematical model of cell-mediated immune response to tumor growth. Cancer Res 65:7950–7958. https://doi.org/10.1158/0008-5472.CAN-05-0564

de Pillis L, Fister KR, Gu W, Collins C, Daub M, Gross D, Moore J, Preskill B (2019) Mathematical model creation for cancer chemo-immunotherapy. Comput Math Methods Med 10(3):165–184. https://doi.org/10.1080/17486700802216301

Deng GE, Frenkel M, Cohen L, Cassileth BR, Abrams DI, Capodice JL, Courneya KS, Dryden T, Hanser S, Kumar N, Labriola D, Wardell DW, Sagar S, Oncology SI (2009) Evidence-based clinical practice guidelines for integrative oncology: complementary therapies and botanicals. J Soc Integr Oncol 7(3):85–120. https://doi.org/10.2310/7200.2009.0019

d’Onofrio A (2008) “Fuzzy oncology”: fuzzy noise induced bifurcations and their application to anti-tumor chemotherapy. Appl Math Lett 21:662–668. https://doi.org/10.1109/TFUZZ.2017.2735939

Dutta P (2017) Modeling of variability and uncertainty in human health risk assessment. MethodsX 4:76–85

Eladdadi A, Kim P, Mallet D (eds) (2014) Mathematical model of tumor-immune system dynamics. Springer, New York

Enriquez-Navas PM, Wojtkowiak JW, Gatenby RA (2015) Application of evolutionary principles to cancer therapy. Cancer Res 75(22):4675–4680. https://doi.org/10.1158/0008-5472.CAN-15-1337

Esmaili SS, Nasrabadi AM (2009) Uncertainty analysis in tumor model with fuzzy parameters. In: International conference on computational intelligence and software engineering, CDROM ISBN 978-1-4244-4507-3

Ferreira JCM, Brandão A, Bassanezi RC (2018) On the Nguyen theorem for topological spaces (preprint)

Gatenby R (1996) Application of competition theory to tumour growth: implications for tumour biology and treatment. Eur J Cancer 32(4):722–726. https://doi.org/10.1016/0959-8049(95)00658-3

Gholami S, Alasty A, Salarieh H, Hosseinian-Sarajehlou M (2015) On the control of tumor growth via type-1 and interval type-2 fuzzy logic. J Mech Med Biol 15(05):1550083. https://doi.org/10.1142/S0219519415500839

Holford NH, Sheiner LB (1981) Pharmacokinetic and pharmacodynamic modeling in vivo. Crit Rev Bioeng 5:273–322

Jafelice RM, Silva CAF, Barros LC, Bassanezi RC (2015) A fuzzy delay approach for HIV dynamics using a cellular automatons. J Appl Math. https://doi.org/10.1155/2015/378753

Kohandel M, Sivaloganathan S, Oza A (2006) Mathematical modeling of ovarian cancer treatments: sequencing of surgery and chemotherapy. J Theor Biol 242:62–68. https://doi.org/10.1016/j.jtbi.2006.02.001

Martin R, Teo KL (1993) Optimal control of drug administration in cancer chemotherapy. World Scientific, Singapore

Morgan G, Ward R, Barton M (2004) The contribution of cytotoxic chemotherapy to 5-year survival in adult malignancies. Clin Oncol 16(8):549–560. https://doi.org/10.1016/j.clon.2004.06.007

Nanda S, de Pillis L, Radunskaya A (2013) B cell chronic lymphocytic leukemia—a model with immune response. Discret Cont Dyn Syst Ser B 18(4):1053–1078. https://doi.org/10.3934/dcdsb.2013.18.1053

Nani FK, Oğuztöreli MN (1994) Modelling and simulation of Rosenberg-type adoptive cellular immunotherapy. Math Med Biol 11(2):107–147. https://doi.org/10.1093/imammb/11.2.107

Nasiri H, Kalat AA (2018) Adaptive fuzzy back-stepping control of drug dosage regimen in cancer treatment. Biom Signal Proces Control 42:267–276. https://doi.org/10.1016/j.bspc.2018.02.001

National Cancer Institute (2019). https://www.cancer.gov/publications/ dictionaries/ cancer-terms/def/alternative-medicine . Accessed Jan 2019

Nisbet RM, Gurney WSC (1982) Modelling fluctuating populations. Wiley, Chichester

Norton L, Simon R (1977) Tumor size, sensitivity to therapy, and design of treatment schedules. Cancer Treat Rep 61(7):1307–1317

Norton L, Simon R (1986) The Norton–Simon hypothesis revisited. Cancer Treat Rep 70:163–169

Obajemu O, Mahfouf M, Catto JWF (2018) A new fuzzy modeling framework for integrated risk prognosis and therapy of bladder cancer patients. IEEE Trans Fuzzy Syst 26(3):1565–1577. https://doi.org/10.1016/j.aml.2007.05.019

O’Byrne KJ, Dalgleish AG, Browning MJ, Steward WP, Harris AL (2000) The relationship between angiogenesis and immune response in carcinogenesis and the progression of malignant disease. Eur J Cancer 36:151–169. https://doi.org/10.1016/S0959-8049(99)00241-5

Okubo A (1980) Diffusion and ecological problems: mathematical models. Springer, Berlin

Panetta JC, Fister KR (2003) Optimal control applied to competing chemotherapeutic cell-kill strategies. SIAM J Appl Math 63(6):1954–1971. https://doi.org/10.1137/S0036139902413489

Razmi F, Moghaddam RK, Rowhanimanesh A (2015) Control of cancer growth using two input autonomous fuzzy nanoparticles. Nano 14(04):1550062. https://doi.org/10.1142/S1793292015500629

Rihan FA, Abdelrahman DH, Al-Maskari F, Ibrahim F, Abdeen MA (2014) Delay differential model for tumour-immune response with chemoimmunotherapy and optimal control. Comput Math Methods Med 2014. https://doi.org/10.1155/2014/982978 (Article ID 982978)

Rodrigues DS, Mancera PFA (2013) Mathematical analysis and simulations involving chemotherapy and surgery on large human tumours under a suitable cell-kill functional response. Math Biosci Eng 10(1):221–234. https://doi.org/10.3934/mbe.2013.10.221

Rodrigues DS, Mancera PFA, Pinho STR (2016) Understanding the antiangiogenic effect of metronomic chemotherapy through a simple mathematical model. Physica A 464:251–266. https://doi.org/10.1016/j.physa.2016.07.076

Rodrigues DS, Mancera PFA, Carvalho T, Gonçalves LF (2019) A mathematical model for chemoimmunotherapy of chronic lymphocytic leukemia. Appl Math Comput 349(15):118–133. https://doi.org/10.1016/j.amc.2018.12.008

Samanta GP, Aíza RG, Sharma S (2017) Analysis of a mathematical model of periodically pulsed chemotherapy treatment. Int J Dyn 5:842–857. https://doi.org/10.1007/s40435-015-0204-z

Schättler H, Ledzewicz U (2015) Optimal control for mathematical models of cancer therapies: an application of geometric methods. Springer, New York

Schiesser WE (2019) Spatiotemporal modeling of cancer immunotherapy: partial differential equation analysis in R. Springer, Basel

Sharma S, Samanta GP (2013) Dynamical behaviour of a tumor-immune system with chemotherapy and optimal control. J Nonlinear Dyn 2013. https://doi.org/10.1155/2013/608598 (Article ID 608598)

Sharma S, Samanta GP (2016) Analysis of the dynamics of a tumor-immune system with chemotherapy and immunotherapy and quadratic optimal control. Differ Equ Dyn Syst 24(2):149–171. https://doi.org/10.1007/s12591-015-0250-1

Skipper HE, Schaebel FM Jr, Wilcox WS (1964) Experimental evaluation of potential anticancer agents XIII: on the criteria and kinetics associated with curability of experimental leukemia. Cancer Chemother Rep 35:1–111

Souza TR (2018) A influência da noética na proliferação de células do adenocarcinoma de mama sob quimioterapia. Ph. thesis, IMECC-UNICAMP (in Portuguese)

Spiegel D, Kraemer HC, Bloom JR, Gottheill E (1989) Effect of psychosocial treatment on survival of patients with metastatic breast cancer. Lancet 334(8668):888–891. https://doi.org/10.1016/S0140-6736(89)91551-1

Sun X, Hu B (2018) Mathematical modeling and computational prediction of cancer drug resistance. Brief Bioinform 19(6):1382–1399. https://doi.org/10.1093/bib/bbx065

Swan GW, Vincent TL (1997) Optimal control analysis in the chemotherapy of IgG multiple myeloma. Bull Math Biol 39(3):317–337. https://doi.org/10.1016/S0092-8240(77)80070-0

Vendite LL (1988) Modelagem matemática para o crescimento tumoral e o problema da resistência celular aos fármacos anti–blásticos. Ph.D. thesis, UNICAMP (in Portuguese)

Wang J, Chen J, Wang H (2018) A new model based on fuzzy integral for cancer prediction. In: IEEE international conference on bioinformatics and biomedicine, pp 2309–2315

WHO (2019) Cancer. http://www.who.int/topics/cancer/en/ . Acessed Jan 2019

Wodarz D, Komarova NL (2014) Dynamics of cancer: mathematical foundations of oncology. World Scientific, Singapore

Zirkohi MM (2019) Finite-time adaptive fuzzy backstepping control of drug dosage regimen in cancer treatment. Trans Inst Meas Control 41(12):3526–3535