Động lực học của mạng lưới ty thể trong quá trình phân bào
Tóm tắt
Trong quá trình phân bào, các tế bào trải qua sự biến dạng và tổ chức lại mạnh mẽ, ảnh hưởng đến tất cả các cấu trúc tế bào. Đặc biệt, ty thể là các bào quan có tính động cao, chúng liên tục trải qua các sự kiện phân chia, hợp nhất và vận chuyển dựa trên hệ thống sợi tế bào. Tính đàn hồi này đảm bảo sự phân bổ đúng đắn của quá trình chuyển hóa, và sự di truyền đúng đắn của các bào quan chức năng. Durante chu kỳ tế bào, ty thể trải qua những thay đổi mạnh mẽ về phân bố. Trong bài tổng quan này, chúng tôi tập trung vào các sự kiện động học nhắm đến ty thể trong quá trình phân bào. Chúng tôi mô tả cách mà protein liên kết với vi ống phụ thuộc vào chu kỳ tế bào, protein centromeric F (Cenp-F), được tuyển chọn đến ty thể bởi GTPase Rho ty thể (Miro) để thúc đẩy sự vận chuyển và phân bổ lại của ty thể sau khi tế bào phân chia.
Từ khóa
Tài liệu tham khảo
Jongsma, 2014, On the move: organelle dynamics during mitosis, Trends Cell Biol., 25, 112, 10.1016/j.tcb.2014.10.005
Christiansen, 1949, Orientation of the mitochondria during mitosis, Nature, 163, 361, 10.1038/163361a0
Taguchi, 2007, Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission, J. Biol. Chem., 282, 11521, 10.1074/jbc.M607279200
Kanfer, 2015, Mitotic redistribution of the mitochondrial network by Miro and Cenp-F, Nat. Commun., 6, 8015, 10.1038/ncomms9015
Lawrence, 2013, Mitochondria localize to the cleavage furrow in mammalian cytokinesis, PLoS One, 8, e72886, 10.1371/journal.pone.0072886
van der Bliek, 2013, Mechanisms of mitochondrial fission and fusion, Cold Spring Harb. Perspect. Biol., 5, a011072, 10.1101/cshperspect.a011072
Kashatus, 2011, RALA and RALBP1 regulate mitochondrial fission at mitosis, Nat. Cell Biol., 13, 1108, 10.1038/ncb2310
Braschi, 2009, MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission, EMBO Rep., 10, 748, 10.1038/embor.2009.86
Zunino, 2009, Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis, J. Biol. Chem., 284, 17783, 10.1074/jbc.M901902200
Horn, 2011, Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability, Mol. Biol. Cell., 22, 1207, 10.1091/mbc.E10-07-0567
Park, 2012, Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5, Cell Div., 7, 25, 10.1186/1747-1028-7-25
Rafelski, 2012, Mitochondrial network size scaling in budding yeast, Science, 338, 822, 10.1126/science.1225720
Boldogh, 2001, Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast, Proc. Natl. Acad. Sci. U.S.A., 98, 3162, 10.1073/pnas.051494698
Senning, 2010, Actin polymerization driven mitochondrial transport in mating S. cerevisiae, Proc. Natl. Acad. Sci. U.S.A., 107, 721, 10.1073/pnas.0908338107
Altmann, 2008, The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae, J. Cell Biol., 181, 119, 10.1083/jcb.200709099
Chernyakov, 2013, Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11, Curr. Biol., 23, 1818, 10.1016/j.cub.2013.07.053
Lackner, 2013, Endoplasmic reticulum-associated mitochondria–cortex tether functions in the distribution and inheritance of mitochondria, Proc. Natl. Acad. Sci. U.S.A., 110, E458, 10.1073/pnas.1215232110
Lackner, 2013, Determining the shape and cellular distribution of mitochondria: the integration of multiple activities, Curr. Opin. Cell Biol., 25, 471, 10.1016/j.ceb.2013.02.011
Glater, 2006, Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent, J. Cell Biol., 173, 545, 10.1083/jcb.200601067
van Spronsen, 2013, TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites, Neuron, 77, 485, 10.1016/j.neuron.2012.11.027
Nangaku, 1994, KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria, Cell, 79, 1209, 10.1016/0092-8674(94)90012-4
Varadi, 2004, Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1, J. Cell Sci., 117, 4389, 10.1242/jcs.01299
Wang, 2015, Dynamic tubulation of mitochondria drives mitochondrial network formation, Cell Res., 25, 1108, 10.1038/cr.2015.89
Stowers, 2002, Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein, Neuron, 36, 1063, 10.1016/S0896-6273(02)01094-2
Fransson, 2003, Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis, J. Biol. Chem., 278, 6495, 10.1074/jbc.M208609200
Wang, 2009, The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility, Cell, 136, 163, 10.1016/j.cell.2008.11.046
Fransson, 2006, The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking, Biochem. Biophys. Res. Commun., 344, 500, 10.1016/j.bbrc.2006.03.163
Frederick, 2004, Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway, J. Cell Biol., 167, 87, 10.1083/jcb.200405100
Klosowiak, 2013, Structural coupling of the EF hand and C-terminal GTPase domains in the mitochondrial protein Miro, EMBO Rep., 14, 968, 10.1038/embor.2013.151
Jaffe, 2005, Rho GTPases: biochemistry and biology, Annu. Rev. Cell Dev. Biol., 21, 247, 10.1146/annurev.cellbio.21.020604.150721
Suzuki, 2014, Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases, Cell Host Microbe, 16, 581, 10.1016/j.chom.2014.09.015
Birsa, 2013, Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins, Biochem. Soc. Trans., 41, 1525, 10.1042/BST20130234
Kornmann, 2009, An ER–mitochondria tethering complex revealed by a synthetic biology screen, Science, 325, 477, 10.1126/science.1175088
Stroud, 2011, Composition and topology of the endoplasmic reticulum–mitochondria encounter structure, J. Mol. Biol., 413, 743, 10.1016/j.jmb.2011.09.012
Kornmann, 2011, The conserved GTPase Gem1 regulates endoplasmic reticulum–mitochondria connections, Proc. Natl. Acad. Sci. U.S.A., 108, 14151, 10.1073/pnas.1111314108
Frederick, 2008, Multiple pathways influence mitochondrial inheritance in budding yeast, Genetics, 178, 825, 10.1534/genetics.107.083055
Rattner, 1993, CENP-F is a ca. 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization, Cell Motil. Cytoskeleton, 26, 214, 10.1002/cm.970260305
Liao, 1995, CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis, J. Cell Biol., 130, 507, 10.1083/jcb.130.3.507
Vergnolle, 2007, Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes, Curr. Biol., 17, 1173, 10.1016/j.cub.2007.05.077
Yang, 2003, Mitosin/CENP-F is a conserved kinetochore protein subjected to cytoplasmic dynein-mediated poleward transport, Cell Res., 13, 275, 10.1038/sj.cr.7290172
Bolhy, 2011, A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase, J. Cell Biol., 192, 855, 10.1083/jcb.201007118
Volkov, 2015, Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules, J. Cell Biol., 209, 813, 10.1083/jcb.201408083
Harbauer, 2014, Cell cycle-dependent regulation of mitochondrial preprotein translocase, Science, 346, 1109, 10.1126/science.1261253
Wang, 2014, Cyclin B1/Cdk1 coordinates mitochondrial respiration for Cell-cycle G2/M progression, Dev. Cell, 29, 217, 10.1016/j.devcel.2014.03.012
Schwarz, 2013, Mitochondrial trafficking in neurons, Cold Spring Harb. Perspect. Biol., 5, 1, 10.1101/cshperspect.a011304
Van Horssen, 2009, Modulation of cell motility by spatial repositioning of enzymatic ATP/ADP exchange capacity, J. Biol. Chem., 284, 1620, 10.1074/jbc.M806974200
Katajisto, 2015, Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness, Science, 348, 340, 10.1126/science.1260384