Động lực học của mạng lưới ty thể trong quá trình phân bào

Biochemical Society Transactions - Tập 44 Số 2 - Trang 510-516 - 2016
Gil Kanfer1, Benoı̂t Kornmann1
1Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland

Tóm tắt

Trong quá trình phân bào, các tế bào trải qua sự biến dạng và tổ chức lại mạnh mẽ, ảnh hưởng đến tất cả các cấu trúc tế bào. Đặc biệt, ty thể là các bào quan có tính động cao, chúng liên tục trải qua các sự kiện phân chia, hợp nhất và vận chuyển dựa trên hệ thống sợi tế bào. Tính đàn hồi này đảm bảo sự phân bổ đúng đắn của quá trình chuyển hóa, và sự di truyền đúng đắn của các bào quan chức năng. Durante chu kỳ tế bào, ty thể trải qua những thay đổi mạnh mẽ về phân bố. Trong bài tổng quan này, chúng tôi tập trung vào các sự kiện động học nhắm đến ty thể trong quá trình phân bào. Chúng tôi mô tả cách mà protein liên kết với vi ống phụ thuộc vào chu kỳ tế bào, protein centromeric F (Cenp-F), được tuyển chọn đến ty thể bởi GTPase Rho ty thể (Miro) để thúc đẩy sự vận chuyển và phân bổ lại của ty thể sau khi tế bào phân chia.

Từ khóa


Tài liệu tham khảo

Jongsma, 2014, On the move: organelle dynamics during mitosis, Trends Cell Biol., 25, 112, 10.1016/j.tcb.2014.10.005

Christiansen, 1949, Orientation of the mitochondria during mitosis, Nature, 163, 361, 10.1038/163361a0

Taguchi, 2007, Mitotic phosphorylation of dynamin-related GTPase Drp1 participates in mitochondrial fission, J. Biol. Chem., 282, 11521, 10.1074/jbc.M607279200

Kanfer, 2015, Mitotic redistribution of the mitochondrial network by Miro and Cenp-F, Nat. Commun., 6, 8015, 10.1038/ncomms9015

Lawrence, 2013, Mitochondria localize to the cleavage furrow in mammalian cytokinesis, PLoS One, 8, e72886, 10.1371/journal.pone.0072886

van der Bliek, 2013, Mechanisms of mitochondrial fission and fusion, Cold Spring Harb. Perspect. Biol., 5, a011072, 10.1101/cshperspect.a011072

Kashatus, 2011, RALA and RALBP1 regulate mitochondrial fission at mitosis, Nat. Cell Biol., 13, 1108, 10.1038/ncb2310

Braschi, 2009, MAPL is a new mitochondrial SUMO E3 ligase that regulates mitochondrial fission, EMBO Rep., 10, 748, 10.1038/embor.2009.86

Zunino, 2009, Translocation of SenP5 from the nucleoli to the mitochondria modulates DRP1-dependent fission during mitosis, J. Biol. Chem., 284, 17783, 10.1074/jbc.M901902200

Horn, 2011, Regulation of mitochondrial morphology by APC/CCdh1-mediated control of Drp1 stability, Mol. Biol. Cell., 22, 1207, 10.1091/mbc.E10-07-0567

Park, 2012, Mitofusin 1 is degraded at G2/M phase through ubiquitylation by MARCH5, Cell Div., 7, 25, 10.1186/1747-1028-7-25

Rafelski, 2012, Mitochondrial network size scaling in budding yeast, Science, 338, 822, 10.1126/science.1225720

Boldogh, 2001, Arp2/3 complex and actin dynamics are required for actin-based mitochondrial motility in yeast, Proc. Natl. Acad. Sci. U.S.A., 98, 3162, 10.1073/pnas.051494698

Senning, 2010, Actin polymerization driven mitochondrial transport in mating S. cerevisiae, Proc. Natl. Acad. Sci. U.S.A., 107, 721, 10.1073/pnas.0908338107

Altmann, 2008, The class V myosin motor protein, Myo2, plays a major role in mitochondrial motility in Saccharomyces cerevisiae, J. Cell Biol., 181, 119, 10.1083/jcb.200709099

Chernyakov, 2013, Active segregation of yeast mitochondria by Myo2 is essential and mediated by Mmr1 and Ypt11, Curr. Biol., 23, 1818, 10.1016/j.cub.2013.07.053

Lackner, 2013, Endoplasmic reticulum-associated mitochondria–cortex tether functions in the distribution and inheritance of mitochondria, Proc. Natl. Acad. Sci. U.S.A., 110, E458, 10.1073/pnas.1215232110

Lackner, 2013, Determining the shape and cellular distribution of mitochondria: the integration of multiple activities, Curr. Opin. Cell Biol., 25, 471, 10.1016/j.ceb.2013.02.011

Glater, 2006, Axonal transport of mitochondria requires milton to recruit kinesin heavy chain and is light chain independent, J. Cell Biol., 173, 545, 10.1083/jcb.200601067

van Spronsen, 2013, TRAK/Milton motor-adaptor proteins steer mitochondrial trafficking to axons and dendrites, Neuron, 77, 485, 10.1016/j.neuron.2012.11.027

Nangaku, 1994, KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria, Cell, 79, 1209, 10.1016/0092-8674(94)90012-4

Varadi, 2004, Cytoplasmic dynein regulates the subcellular distribution of mitochondria by controlling the recruitment of the fission factor dynamin-related protein-1, J. Cell Sci., 117, 4389, 10.1242/jcs.01299

Wang, 2015, Dynamic tubulation of mitochondria drives mitochondrial network formation, Cell Res., 25, 1108, 10.1038/cr.2015.89

Stowers, 2002, Axonal transport of mitochondria to synapses depends on milton, a novel Drosophila protein, Neuron, 36, 1063, 10.1016/S0896-6273(02)01094-2

Fransson, 2003, Atypical Rho GTPases have roles in mitochondrial homeostasis and apoptosis, J. Biol. Chem., 278, 6495, 10.1074/jbc.M208609200

Wang, 2009, The mechanism of Ca2+-dependent regulation of kinesin-mediated mitochondrial motility, Cell, 136, 163, 10.1016/j.cell.2008.11.046

Fransson, 2006, The atypical Rho GTPases Miro-1 and Miro-2 have essential roles in mitochondrial trafficking, Biochem. Biophys. Res. Commun., 344, 500, 10.1016/j.bbrc.2006.03.163

Frederick, 2004, Yeast Miro GTPase, Gem1p, regulates mitochondrial morphology via a novel pathway, J. Cell Biol., 167, 87, 10.1083/jcb.200405100

Klosowiak, 2013, Structural coupling of the EF hand and C-terminal GTPase domains in the mitochondrial protein Miro, EMBO Rep., 14, 968, 10.1038/embor.2013.151

Jaffe, 2005, Rho GTPases: biochemistry and biology, Annu. Rev. Cell Dev. Biol., 21, 247, 10.1146/annurev.cellbio.21.020604.150721

Suzuki, 2014, Vibrio cholerae T3SS effector VopE modulates mitochondrial dynamics and innate immune signaling by targeting Miro GTPases, Cell Host Microbe, 16, 581, 10.1016/j.chom.2014.09.015

Birsa, 2013, Mitochondrial trafficking in neurons and the role of the Miro family of GTPase proteins, Biochem. Soc. Trans., 41, 1525, 10.1042/BST20130234

Kornmann, 2009, An ER–mitochondria tethering complex revealed by a synthetic biology screen, Science, 325, 477, 10.1126/science.1175088

Stroud, 2011, Composition and topology of the endoplasmic reticulum–mitochondria encounter structure, J. Mol. Biol., 413, 743, 10.1016/j.jmb.2011.09.012

Kornmann, 2011, The conserved GTPase Gem1 regulates endoplasmic reticulum–mitochondria connections, Proc. Natl. Acad. Sci. U.S.A., 108, 14151, 10.1073/pnas.1111314108

Frederick, 2008, Multiple pathways influence mitochondrial inheritance in budding yeast, Genetics, 178, 825, 10.1534/genetics.107.083055

Rattner, 1993, CENP-F is a ca. 400 kDa kinetochore protein that exhibits a cell-cycle dependent localization, Cell Motil. Cytoskeleton, 26, 214, 10.1002/cm.970260305

Liao, 1995, CENP-F is a protein of the nuclear matrix that assembles onto kinetochores at late G2 and is rapidly degraded after mitosis, J. Cell Biol., 130, 507, 10.1083/jcb.130.3.507

Vergnolle, 2007, Cenp-F links kinetochores to Ndel1/Nde1/Lis1/dynein microtubule motor complexes, Curr. Biol., 17, 1173, 10.1016/j.cub.2007.05.077

Yang, 2003, Mitosin/CENP-F is a conserved kinetochore protein subjected to cytoplasmic dynein-mediated poleward transport, Cell Res., 13, 275, 10.1038/sj.cr.7290172

Bolhy, 2011, A Nup133-dependent NPC-anchored network tethers centrosomes to the nuclear envelope in prophase, J. Cell Biol., 192, 855, 10.1083/jcb.201007118

Volkov, 2015, Centromere protein F includes two sites that couple efficiently to depolymerizing microtubules, J. Cell Biol., 209, 813, 10.1083/jcb.201408083

Harbauer, 2014, Cell cycle-dependent regulation of mitochondrial preprotein translocase, Science, 346, 1109, 10.1126/science.1261253

Wang, 2014, Cyclin B1/Cdk1 coordinates mitochondrial respiration for Cell-cycle G2/M progression, Dev. Cell, 29, 217, 10.1016/j.devcel.2014.03.012

Schwarz, 2013, Mitochondrial trafficking in neurons, Cold Spring Harb. Perspect. Biol., 5, 1, 10.1101/cshperspect.a011304

Van Horssen, 2009, Modulation of cell motility by spatial repositioning of enzymatic ATP/ADP exchange capacity, J. Biol. Chem., 284, 1620, 10.1074/jbc.M806974200

Katajisto, 2015, Stem cells. Asymmetric apportioning of aged mitochondria between daughter cells is required for stemness, Science, 348, 340, 10.1126/science.1260384

Stewart, 2008, Strong purifying selection in transmission of mammalian mitochondrial DNA, PLoS Biol., 6, e10, 10.1371/journal.pbio.0060010